Abstract

We analyze experimentally the polarization properties of highly nonlinear small-core photonic crystal fibers (PCFs) with no intentional birefringence. The properties of recently emerged polarization maintaining PANDA PCFs are also investigated. The wavelength and temperature dependence of phase and group delay of these fibers are examined in the telecommunications wavelength range. Compared to a standard PANDA fiber, the polarization characteristics and temperature dependence are found to be qualitatively different for both types of fibers.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. M. D. Nielsen, G. Vienne, J. R. Jensen, and A. Bjarklev, �??Modeling birefringence in isolated elliptical core photonic crystal fibers,�?? in Proceedings of Laser & Electro-Optics Society, vol. 2, 707-708, San Diego, USA, (2001).
  2. J. R. Folkenberg, M. D. Nielsen, N. A. Mortensen, C. Jakobsen, and H. R. Simonsen, �??Polarization maintaining large mode area photonic crystal fiber,�?? Opt. Express 12, 956-960 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-956">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-956</a>.
    [CrossRef] [PubMed]
  3. T. Ritari, T. Niemi, M. Wegmuller, N. Gisin, J.R. Folkenberg, A. Pettersson, and H. Ludvigsen, �??Polarization-mode dispersion of large mode-area photonic crystal fibers,�?? Opt. Commun. 226, 233-239 (2003).
    [CrossRef]
  4. J. Noda, K. Okamoto, and Y. Sasaki, �??Polarization-maintaining fibers and their applications,�?? J. Lightwave Technol. LT-4, 1071-1088 (1986).
    [CrossRef]
  5. A. Peyrilloux, T. Chartier, A. Hideur, L. Berthelot, G. Mélin, S. Lempereur, D. Pagnoux, and P. Roy, �??Theoretical and experimental study of the birefringence of a photonic crystal fiber,�?? J. Lightwave Tech. 21, 536-539, (2002).
    [CrossRef]
  6. T. Nasilowski, P. Lesiak, R. Kotynski, M. Antkowiak, A. Fernandez, F. Berghmans, and H. Thienpont, �??Birefringent photonic crystal fiber as a multi-parameter sensor,�?? in Proceedings of Laser & Electro-Optics Society, 29-32, Enschede, The Netherlands (2003).
  7. M. Legré, M. Wegmuller, and N. Gisin, �??Investigation of the ratio between phase and group birefringence in optical single-mode fibers,�?? J. Lightwave Tech. 21, 3374-3378 (2003).
    [CrossRef]
  8. G. Statkiewicz, T. Martynkien, and W. Urbanczyk, �??Measurements of modal birefringence and polarimetric sensitivity of the birefringent holey fiber to hydrostatic pressure and strain,�?? Opt. Commun. 241, 339-348 (2004).
    [CrossRef]
  9. A. Michie, J. Canning, K. Lyytikäinen, M. �?slund, and J. Digweed, �??Temperature independent highly birefringent photonic crystal fibre,�?? Opt. Express 12, 5160-5165 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-21-5160">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-21-5160</a>.
    [CrossRef] [PubMed]
  10. B. Huttner, J. Reecht, N. Gisin, R. Passy, and J. P. Von der Weid, �??Local birefringence measurements in single-mode fibers with coherent frequency-domain reflectometry,�?? Photon. Technol. Lett. 10, 1458-1460 (1998).
    [CrossRef]
  11. M. Wegmuller, M. Legré, and N. Gisin, �??Distributed beatlength measurement in single-mode fibers with Optical Frequency-Domain Reflectometry,�?? J. Lightwave Tech. 20, 828-835, (2002).
    [CrossRef]
  12. B. L. Heffner, �??Automated measurement of polarization mode dispersion using Jones matrix eigenanalysis,�?? Photon. Technol. Lett. 4, 1066-1069 (1992).
    [CrossRef]
  13. S. C. Rashleigh, �??Measurement of fiber birefringence by wavelength scanning: effect of dispersion,�?? Opt. Lett. 8, 336-338 (1983).
    [CrossRef] [PubMed]
  14. W. K. Burns and R. P. Moeller, �??Measurement of polarization mode dispersion in high-birefringence fibers,�?? Opt. Lett. 8, 195-197 (1983).
    [CrossRef] [PubMed]
  15. S. E. Barkou Libori, J. Broeng, E. Knudsen, A. Bjarklev, and H. R. Simonsen, �??High-birefringent photonic crystal fiber,�?? in Proceedings of Optical Fiber Communication Conference, paper TuM2, Anaheim, USA (2001).
  16. M. Szpulak, T. Martynkien, W. Urbanczyk, J. Wójcik, and W. J. Bock, �??Influence of temperature on birefringence and polarization mode dispersion in photonic crystal fibers,�?? in Proceedings of 4th International Conference on Transparent Optical Networks, paper WeP10, Warsaw, Poland (2002).
  17. M. Szpulak, T. Martynkien, and W. Urbanczyk, �??Effects of hydrostatic pressure on phase and group modal birefringence in microstructured holey fibers,�?? Appl. Opt. 43, 4739-4744 (2004).
    [CrossRef] [PubMed]
  18. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, New York, 1983), Chap. 17.

Appl. Opt.

J. Lightwave Tech.

A. Peyrilloux, T. Chartier, A. Hideur, L. Berthelot, G. Mélin, S. Lempereur, D. Pagnoux, and P. Roy, �??Theoretical and experimental study of the birefringence of a photonic crystal fiber,�?? J. Lightwave Tech. 21, 536-539, (2002).
[CrossRef]

M. Legré, M. Wegmuller, and N. Gisin, �??Investigation of the ratio between phase and group birefringence in optical single-mode fibers,�?? J. Lightwave Tech. 21, 3374-3378 (2003).
[CrossRef]

M. Wegmuller, M. Legré, and N. Gisin, �??Distributed beatlength measurement in single-mode fibers with Optical Frequency-Domain Reflectometry,�?? J. Lightwave Tech. 20, 828-835, (2002).
[CrossRef]

J. Lightwave Technol.

J. Noda, K. Okamoto, and Y. Sasaki, �??Polarization-maintaining fibers and their applications,�?? J. Lightwave Technol. LT-4, 1071-1088 (1986).
[CrossRef]

Laser & Electro-Optics 2001

M. D. Nielsen, G. Vienne, J. R. Jensen, and A. Bjarklev, �??Modeling birefringence in isolated elliptical core photonic crystal fibers,�?? in Proceedings of Laser & Electro-Optics Society, vol. 2, 707-708, San Diego, USA, (2001).

Laser & Electro-Optics 2003

T. Nasilowski, P. Lesiak, R. Kotynski, M. Antkowiak, A. Fernandez, F. Berghmans, and H. Thienpont, �??Birefringent photonic crystal fiber as a multi-parameter sensor,�?? in Proceedings of Laser & Electro-Optics Society, 29-32, Enschede, The Netherlands (2003).

Opt. Commun.

T. Ritari, T. Niemi, M. Wegmuller, N. Gisin, J.R. Folkenberg, A. Pettersson, and H. Ludvigsen, �??Polarization-mode dispersion of large mode-area photonic crystal fibers,�?? Opt. Commun. 226, 233-239 (2003).
[CrossRef]

G. Statkiewicz, T. Martynkien, and W. Urbanczyk, �??Measurements of modal birefringence and polarimetric sensitivity of the birefringent holey fiber to hydrostatic pressure and strain,�?? Opt. Commun. 241, 339-348 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Optical Fiber Communication Conf. 2001

S. E. Barkou Libori, J. Broeng, E. Knudsen, A. Bjarklev, and H. R. Simonsen, �??High-birefringent photonic crystal fiber,�?? in Proceedings of Optical Fiber Communication Conference, paper TuM2, Anaheim, USA (2001).

Photon. Technol. Lett.

B. Huttner, J. Reecht, N. Gisin, R. Passy, and J. P. Von der Weid, �??Local birefringence measurements in single-mode fibers with coherent frequency-domain reflectometry,�?? Photon. Technol. Lett. 10, 1458-1460 (1998).
[CrossRef]

B. L. Heffner, �??Automated measurement of polarization mode dispersion using Jones matrix eigenanalysis,�?? Photon. Technol. Lett. 4, 1066-1069 (1992).
[CrossRef]

Transparent Optical Networks

M. Szpulak, T. Martynkien, W. Urbanczyk, J. Wójcik, and W. J. Bock, �??Influence of temperature on birefringence and polarization mode dispersion in photonic crystal fibers,�?? in Proceedings of 4th International Conference on Transparent Optical Networks, paper WeP10, Warsaw, Poland (2002).

Other

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, New York, 1983), Chap. 17.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Cross-sections of the analyzed PCFs. (From left to right) PANDA5 (PANDA7 and PANDA9 have the same cross-section with a different scaling), PCF3, and PCF2.

Fig. 2.
Fig. 2.

Phase delay (a,d), group delay (b,e) and ratio of B/β (c,f) as a function of wavelength for PCF2/PCF3 and PANDA5/PANDA9, respectively.

Fig. 3.
Fig. 3.

KT as a function of wavelength. Arrows indicate corresponding scales.

Fig. 4.
Fig. 4.

B as a function of temperature @ 1550 nm (averaged over at least 10 nm intervals). Arrows indicate corresponding scales.

Tables (2)

Tables Icon

Table 1. Birefringence properties of different PCF samples and standard PANDA fiber @ 1550 nm.

Tables Icon

Table 2. Temperature sensitivities of phase and group delay @ 1550 nm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

L b = λ c β = 2 π β rad ,
B β rad ω = β λ β λ .

Metrics