Abstract

Variable crystal quality affects the laser performance of many self-frequency doubling crystals, particularly those of the yttrium aluminum borate family. In this report we characterize nonlinear frequency conversion in Yb:YAB and demonstrate a simple non-destructive technique for measuring crystal quality. By imaging the nonlinear conversion using a CCD camera we observe phase matching characteristics similar to that obtained in quasi-phase-matched crystals. These effects are attributed to stacking faults in the structure of the YAB crystal during crystal growth. We believe that such defects cause the large variability in self-doubled performance reported for Nd- or Yb-doped YAB and that our technique may be used as a nondestructive measurement of crystal quality.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. F. Mougel, K. Dardenne, G. Aka, A. Kahn-Harari, and D. Vivien, "Ytterbium-doped Ca4GdO(BO3)3: An efficient infrared laser and self-frequency doubling crystal," J. Opt. Soc. Am. B 16, 164-172 (1999).
    [CrossRef]
  2. D.A. Hammons, M. Richardson, B.H.T. Chai, A.K. Chin, and R. Jollay, "Scaling of longitudinally diode-pumped self-frequency-doubling Nd:YCOB lasers," IEEE J. Quantum Electron. 36, 991-999 (2000).
    [CrossRef]
  3. E. Montoya, J. Capmany, L.E. Bausa, T. Kellner, A. Diening, and G. Huber, "Infrared and self-frequency doubled laser action in Yb3+-doped LiNbO3:MgO," Appl. Phys. Lett. 74, 3113-3115 (1999).
    [CrossRef]
  4. P. Wang, P. Dekker, J.M. Dawes, J.A. Piper, Y.G. Liu, and T.Y. Wang, "Efficient continuous-wave self-frequency-doubling green diode-pumped Yb:YAl3(BO3)4 lasers," Opt. Lett. 25, 731-733 (2000).
    [CrossRef]
  5. P. Dekker, J.M. Dawes, J.A. Piper, Y.G. Liu, and J.Y. Wang, "1.1 W CW self-frequency-doubled diode-pumped Yb:YAl3(BO3)4 laser," Opt. Commun. 195, 431-436 (2001).
    [CrossRef]
  6. P.A. Burns, J.M. Dawes, P. Dekker, J.A. Piper, J. Li, and J.Y. Wang, "Coupled-cavity, single-frequency, yellow microchip tunable cw Yb:YAB laser," Opt. Commun. 207, 315-320 (2002).
    [CrossRef]
  7. P. Dekker, P.A. Burns, J.M. Dawes, J.A. Piper, J. Li, X.B. Hu, and J.Y. Wang, "Widely tunable yellow-green lasers based on the self-frequency-doubling material Yb:YAB," J. Opt. Soc. Am. B 20, 706-712 (2003).
    [CrossRef]
  8. P. Dekker, J.M. Dawes, and J.A. Piper, "2.27W Q-switched Self-doubling Yb:YAB laser with controllable pulse length," J. Opt. Soc. Am. B (to be published), (2004).
  9. J. Bartschke, R. Knappe, K.J. Boller, and R. Wallenstein, "Investigation of Efficient Self-Frequency-Doubling Nd:YAB Lasers," IEEE J. Quantum Electron. 33, 2295-2300 (1997).
    [CrossRef]
  10. G. Lucas-Leclin, F. Auge, S.C. Auzanneau, F. Balembois, P. Georges, A. Brun, E. Mougel, G. Aka, and D. Vivien, "Diode-pumped self-frequency-doubling Nd:GdCa4O(BO3)3 lasers: toward green microchip lasers," J. Opt. Soc. Am. B 17, 1526-1530 (2000).
    [CrossRef]
  11. G. Aka, A. Kahnharari, F. Mougel, D. Vivien, F. Salin, P. Coquelin, P. Colin, D. Pelenc, and J.P. Damelet, "Linear- and Nonlinear-Optical Properties of a New Gadolinium Calcium Oxoborate Crystal, Ca4GdO(BO3)3," J. Opt. Soc. Am. B 14, 2238-2247 (1997).
    [CrossRef]
  12. H.-F. Pan, P. Wang, X.-F. Fan, R.-H. Wang, and B.-S. Lu, "Effects of Lu3+ doping on optical properties and laser performances of NYAB crystal," Chinese Phys. Lett. 13, 602-605 (1996).
    [CrossRef]
  13. P. Dekker, Y.J. Huo, J.M. Dawes, J.A. Piper, P. Wang, and B.S. Lu, "Continuous Wave and Q-Switched Diode-Pumped Neodymium, Lutetium - Yttrium Aluminium Borate Lasers," Opt. Commun. 151, 406-412 (1998).
    [CrossRef]
  14. A. Brenier, C.Y. Tu, M.W. Qiu, A.D. Jiang, J.F. Li, and B.C. Wu, "Spectroscopic properties, self-frequency doubling, and self-sum frequency mixing in GdAl3(BO3)4:Nd3+," J. Opt. Soc. Am. B 18, 1104-1110 (2001).
    [CrossRef]
  15. A. Peter, K. Polgar, and E. Beregi, "Revealing growth defects in non-linear borate single crystals by chemical etching," J. Crys. Growth 209, 102-109 (2000).
    [CrossRef]
  16. X.B. Hu, S.S. Jiang, X.R. Huang, W.J. Liu, C.Z. Ge, J.Y. Wang, H.F. Pan, J.H. Jiang, and Z.G. Wang, "The growth defects in self-frequency-doubling laser crystal NdxY1-xAl3(BO3)4," J. Crys. Growth 173, 460-466 (1997).
    [CrossRef]
  17. X.B. Hu, J.Y. Wang, J.Q. Wei, Y.G. Liu, R.B. Song, M.H. Jiang, Y.L. Tian, and J.H. Jiang, "Growth twins in self-frequency doubling laser crystal YbxY1-xAl3(BO3)4," Prog. Crys. Growth Chara. Mat. 40, 57-61 (2000).
    [CrossRef]
  18. S.R. Zhao, J.Y. Wang, D.L. Sun, X.B. Hu, and H. Liu, "Twin structure in Yb:YAl3(BO3)4 crystal," J. Appl. Cryst. 34, 661-662 (2001).
    [CrossRef]
  19. Y.L. Lee, C.S. Jung, Y.C. Noh, M.Y. Park, C.C. Byeon, D.K. Ko, and J. Lee, "Channel-selective wavelength conversion and tuning in periodically poled Ti:LiNbO3 waveguides," Opt. Express 12, 2649-2655 (2004).
    [CrossRef] [PubMed]
  20. M. Asobe, O. Tadanaga, H. Miyazawa, Y. Nishida, and H. Suzuki, "Multiple quasi-phase-matched LiNbO3 wavelength converter with a continuously phase-modulated domain structure," Opt. Lett. 28, 558-560 (2003).
    [CrossRef] [PubMed]
  21. A. Brenier, C. Tu, Z. Zhu, and B. Wu, "Red-green-blue generation from a lone dual-wavelength GdAl3(BO3)4:Nd3+ laser," Appl. Phys. Lett. 84, 2034-2036 (2004).
    [CrossRef]
  22. W. Koechner, Solid-State Laser Engineering. 5th ed. Springer Series in Optical Engineering. Vol. 1. 1999, Berlin: Springer-Verlag.
  23. R.M. Vazquez, R. Osellame, M. Marangoni, R. Ramponi, E. Dieguez, M. Ferrari, and M. Mattarelli, "Optical properties of Dy3+ doped yttrium-aluminium borate," J. Phys. Conden. Matt. 16, 465-471 (2004).
    [CrossRef]

Appl. Phys. Lett. (2)

E. Montoya, J. Capmany, L.E. Bausa, T. Kellner, A. Diening, and G. Huber, "Infrared and self-frequency doubled laser action in Yb3+-doped LiNbO3:MgO," Appl. Phys. Lett. 74, 3113-3115 (1999).
[CrossRef]

A. Brenier, C. Tu, Z. Zhu, and B. Wu, "Red-green-blue generation from a lone dual-wavelength GdAl3(BO3)4:Nd3+ laser," Appl. Phys. Lett. 84, 2034-2036 (2004).
[CrossRef]

Chinese Phys. Lett. (1)

H.-F. Pan, P. Wang, X.-F. Fan, R.-H. Wang, and B.-S. Lu, "Effects of Lu3+ doping on optical properties and laser performances of NYAB crystal," Chinese Phys. Lett. 13, 602-605 (1996).
[CrossRef]

IEEE J. Quantum Electron. (2)

D.A. Hammons, M. Richardson, B.H.T. Chai, A.K. Chin, and R. Jollay, "Scaling of longitudinally diode-pumped self-frequency-doubling Nd:YCOB lasers," IEEE J. Quantum Electron. 36, 991-999 (2000).
[CrossRef]

J. Bartschke, R. Knappe, K.J. Boller, and R. Wallenstein, "Investigation of Efficient Self-Frequency-Doubling Nd:YAB Lasers," IEEE J. Quantum Electron. 33, 2295-2300 (1997).
[CrossRef]

J. Appl. Cryst. (1)

S.R. Zhao, J.Y. Wang, D.L. Sun, X.B. Hu, and H. Liu, "Twin structure in Yb:YAl3(BO3)4 crystal," J. Appl. Cryst. 34, 661-662 (2001).
[CrossRef]

J. Crys. Growth (2)

A. Peter, K. Polgar, and E. Beregi, "Revealing growth defects in non-linear borate single crystals by chemical etching," J. Crys. Growth 209, 102-109 (2000).
[CrossRef]

X.B. Hu, S.S. Jiang, X.R. Huang, W.J. Liu, C.Z. Ge, J.Y. Wang, H.F. Pan, J.H. Jiang, and Z.G. Wang, "The growth defects in self-frequency-doubling laser crystal NdxY1-xAl3(BO3)4," J. Crys. Growth 173, 460-466 (1997).
[CrossRef]

J. Opt. Soc. Am. B (6)

J. Phys. Conden. Matt. (1)

R.M. Vazquez, R. Osellame, M. Marangoni, R. Ramponi, E. Dieguez, M. Ferrari, and M. Mattarelli, "Optical properties of Dy3+ doped yttrium-aluminium borate," J. Phys. Conden. Matt. 16, 465-471 (2004).
[CrossRef]

Opt. Commun. (3)

P. Dekker, Y.J. Huo, J.M. Dawes, J.A. Piper, P. Wang, and B.S. Lu, "Continuous Wave and Q-Switched Diode-Pumped Neodymium, Lutetium - Yttrium Aluminium Borate Lasers," Opt. Commun. 151, 406-412 (1998).
[CrossRef]

P. Dekker, J.M. Dawes, J.A. Piper, Y.G. Liu, and J.Y. Wang, "1.1 W CW self-frequency-doubled diode-pumped Yb:YAl3(BO3)4 laser," Opt. Commun. 195, 431-436 (2001).
[CrossRef]

P.A. Burns, J.M. Dawes, P. Dekker, J.A. Piper, J. Li, and J.Y. Wang, "Coupled-cavity, single-frequency, yellow microchip tunable cw Yb:YAB laser," Opt. Commun. 207, 315-320 (2002).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Prog. Crys. Growth Chara. Mat. (1)

X.B. Hu, J.Y. Wang, J.Q. Wei, Y.G. Liu, R.B. Song, M.H. Jiang, Y.L. Tian, and J.H. Jiang, "Growth twins in self-frequency doubling laser crystal YbxY1-xAl3(BO3)4," Prog. Crys. Growth Chara. Mat. 40, 57-61 (2000).
[CrossRef]

Other (1)

W. Koechner, Solid-State Laser Engineering. 5th ed. Springer Series in Optical Engineering. Vol. 1. 1999, Berlin: Springer-Verlag.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of arrangement used to measure angular and temperature acceptance in YAB.

Fig. 2.
Fig. 2.

Angular acceptance curves for phase matched Yb:YAB in crystals without (a) and with (b) twinning. In both cases f was orientated normal to the probe beam.

Fig. 3.
Fig. 3.

Calculated and measured second harmonic intensity as a function of detuning angle in different regions in a Yb:YAB crystal. Model normalized to singly peaked data.

Fig. 4.
Fig. 4.

Second harmonic phase matching maps in Yb:YAB, (3x3×4.1mm) as a function of phase mismatch. Red/white areas signify high intensities while blue-purple low intensity. Angle in top right hand corner indicates phase-mismatch angle from θpm (external angle).

Fig. 5.
Fig. 5.

Phase matching maps for Yb:YAB and Nd:YAB (lower 3) oriented for optimized phasematching.

Fig. 6.
Fig. 6.

Phase matching maps of Yb:GdCOB as a function of external angle around the optimum (middle image). Crystal dimensions 3×3×5.4 mm, cut θ=66.8°, ϕ=132.6°.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P 2 ω P ω = ( l c ) 2 K 4 π 2 P ω A sin 2 ( π l x 2 l c )

Metrics