Abstract

At near infrared wavelengths, the night sky background seen from the Earth’s surface is almost completely dominated by bright spectral lines due to hydroxyl in the upper atmosphere. In the wavelength range 1–2µm, more than 100 intrinsically narrow spectral lines account for about 98% of the sky background. Now that the performance of infrared detectors is comparable to CCDs at optical wavelengths, the bright infrared sky is the last remaining hurdle to ground-based infrared telescopes reaching sensitivity levels associated with optical telescopes. We demonstrate an aperiodic fibre Bragg grating (AFBG) which performs 94% suppression of OH emission in the 1.50-1.57µm window at a resolving power of R=10,000. This is a working prototype for a device which will allow comparable levels of OH suppression at R=50,000 across the entire near infrared (1.0–2.0µm) spectrum.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. Bland-Hawthorn, J, Harwit, A. & Harwit, M. �??Laser telemetry from space,�?? Science 297, 523 (2002)
    [CrossRef] [PubMed]
  2. Buryak, A.V., Kolossovski, K.Y. & Stepanov, D.Y. �??Optimization of refractive index sampling for multi-channel fibre Bragg gratings,�?? IEEE J. Quantum Electron. 39, 91-98 (2003)
    [CrossRef]
  3. Coude du Foresto, V., Faucherre, M., Hubin, N. & Gitton, P. �??Application of single mode fibres to monitor fast Strehl ratio fluctuations: application to a 3.6m telescope corrected by adaptive optics,�?? Astron. & Astrophys. Suppl. 145, 305-310 (2000)
    [CrossRef]
  4. Ennico, K.A. et al �??Cambridge OH suppression instrument (COHSI): status after first commissioning run,�?? SPIE 3354, 668-674 (1998)
    [CrossRef]
  5. Fan, X. et al �??A survey of z>5.7 quasars in the Sloan Digital Sky Survey. II. Discovery of three additional quasars at z > 6.�?? Astron. J. 125, 1649-1659 (2003)
    [CrossRef]
  6. Gloge, D. �??Weakly Guiding Fibres,�?? Appl. Opt. 10, 2252-2258 (1971)
    [CrossRef] [PubMed]
  7. Hanuschik, R.W. �??A flux calibrated, high resolution spectrum of optical sky emission with UVES,�?? Astron. & Astrophys. 407, 1157-1164 (2003)
    [CrossRef]
  8. Hayano, Y. et al �??Observational impact of scattered light from the laser beam of a laser guide star adaptive optics system,�?? Publ. Astron. Soc. Pac. 115, 1419-1428 (2003)
    [CrossRef]
  9. Herbst, T.M. �??Numerical evaluation of OH suppression instruments,�?? Publ. Astron. Soc. Pac. 106, 1298-1309 (1994)
    [CrossRef]
  10. Hu, E.M. et al. �??A redshift z=6.56 galaxy behind the cluster Abell 370,�?? Astrophys. J. 568, L75-L78 (2002)
    [CrossRef]
  11. Jones, D.H., Bland-Hawthorn, J. & Burton, M.G. �??Numerical evaluation of OH airglow suppression filters,�?? Publ. Astron. Soc. Pac. 108, 929-938 (1996)
    [CrossRef]
  12. Kodaira, K. et al �??The discovery of two Lyα emitters beyond z=6 in the Subaru Deep Field,�?? Publ. Astron. Soc. Jap. 55, L17-L21 (2003)
  13. Kolossovski, K.Y., Sammut, R.A., Buryak, A.V. & Stepanov, D.Y. �??Three-step design optimization for multi-channel fibre Bragg gratings,�?? Opt. Express 11, 1029-1038 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-9-1029">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-9-1029</a>
    [CrossRef] [PubMed]
  14. Maihara, T. et al �??OH airglow suppressor spectrograph: design and prospects,�?? SPIE 1946, 581-586 (1993)
    [CrossRef]
  15. Offer, A.R. & Bland-Hawthorn, J. �??Rugate filters for OH suppressed imaging at near infrared wavelengths,�?? Mon. Not. Roy. Astron. Soc. 299, 176-188 (1998)
    [CrossRef]
  16. Osterbrock, D.E. & Martel, A. �??Sky spectra at a light polluted site and the use of atomic and OH emission lines for wavelength calibration,�?? Publ. Astron. Soc. Pac. 104, 76-82 (1992)
    [CrossRef]
  17. Othonos, A., Lee, X. & Measures, R.M. �??Superimposed multiple Bragg gratings,�?? Electron. Lett. 30, 1972 (1994)
    [CrossRef]
  18. Parry, I.R. et al �??CIRPASS: a near infrared integral field and multi-object spectrograph,�?? SPIE 4008, 1193-1202 (2000)
    [CrossRef]
  19. Rousselot, P. et al �??Night sky spectral atlas of OH emission lines in the near infrared,�?? Astron. & Astrophys. 354, 1134-1150 (2000)
  20. Sakanoi, K. & Fukunishi, H. �??Temporal and spatial structures of flickering aurora derived from high speed imaging photometer observations at Syowa Station in the Antarctic,�?? J. Geophys. Res. A 109, 1221 (2004)
    [CrossRef]

Appl. Opt. (1)

Astron. & Astrophys. (2)

Hanuschik, R.W. �??A flux calibrated, high resolution spectrum of optical sky emission with UVES,�?? Astron. & Astrophys. 407, 1157-1164 (2003)
[CrossRef]

Rousselot, P. et al �??Night sky spectral atlas of OH emission lines in the near infrared,�?? Astron. & Astrophys. 354, 1134-1150 (2000)

Astron. & Astrophys. Suppl. (1)

Coude du Foresto, V., Faucherre, M., Hubin, N. & Gitton, P. �??Application of single mode fibres to monitor fast Strehl ratio fluctuations: application to a 3.6m telescope corrected by adaptive optics,�?? Astron. & Astrophys. Suppl. 145, 305-310 (2000)
[CrossRef]

Astron. J. (1)

Fan, X. et al �??A survey of z>5.7 quasars in the Sloan Digital Sky Survey. II. Discovery of three additional quasars at z > 6.�?? Astron. J. 125, 1649-1659 (2003)
[CrossRef]

Astrophys. J. (1)

Hu, E.M. et al. �??A redshift z=6.56 galaxy behind the cluster Abell 370,�?? Astrophys. J. 568, L75-L78 (2002)
[CrossRef]

Electron. Lett. (1)

Othonos, A., Lee, X. & Measures, R.M. �??Superimposed multiple Bragg gratings,�?? Electron. Lett. 30, 1972 (1994)
[CrossRef]

IEEE J. Quantum Electron. (1)

Buryak, A.V., Kolossovski, K.Y. & Stepanov, D.Y. �??Optimization of refractive index sampling for multi-channel fibre Bragg gratings,�?? IEEE J. Quantum Electron. 39, 91-98 (2003)
[CrossRef]

J. Geophys. Res. A (1)

Sakanoi, K. & Fukunishi, H. �??Temporal and spatial structures of flickering aurora derived from high speed imaging photometer observations at Syowa Station in the Antarctic,�?? J. Geophys. Res. A 109, 1221 (2004)
[CrossRef]

Mon. Not. Roy. Astron. Soc. (1)

Offer, A.R. & Bland-Hawthorn, J. �??Rugate filters for OH suppressed imaging at near infrared wavelengths,�?? Mon. Not. Roy. Astron. Soc. 299, 176-188 (1998)
[CrossRef]

Opt. Express (1)

Publ. Astron. Soc. Jap. (1)

Kodaira, K. et al �??The discovery of two Lyα emitters beyond z=6 in the Subaru Deep Field,�?? Publ. Astron. Soc. Jap. 55, L17-L21 (2003)

Publ. Astron. Soc. Pac. (4)

Osterbrock, D.E. & Martel, A. �??Sky spectra at a light polluted site and the use of atomic and OH emission lines for wavelength calibration,�?? Publ. Astron. Soc. Pac. 104, 76-82 (1992)
[CrossRef]

Jones, D.H., Bland-Hawthorn, J. & Burton, M.G. �??Numerical evaluation of OH airglow suppression filters,�?? Publ. Astron. Soc. Pac. 108, 929-938 (1996)
[CrossRef]

Hayano, Y. et al �??Observational impact of scattered light from the laser beam of a laser guide star adaptive optics system,�?? Publ. Astron. Soc. Pac. 115, 1419-1428 (2003)
[CrossRef]

Herbst, T.M. �??Numerical evaluation of OH suppression instruments,�?? Publ. Astron. Soc. Pac. 106, 1298-1309 (1994)
[CrossRef]

Science (1)

Bland-Hawthorn, J, Harwit, A. & Harwit, M. �??Laser telemetry from space,�?? Science 297, 523 (2002)
[CrossRef] [PubMed]

SPIE (3)

Ennico, K.A. et al �??Cambridge OH suppression instrument (COHSI): status after first commissioning run,�?? SPIE 3354, 668-674 (1998)
[CrossRef]

Maihara, T. et al �??OH airglow suppressor spectrograph: design and prospects,�?? SPIE 1946, 581-586 (1993)
[CrossRef]

Parry, I.R. et al �??CIRPASS: a near infrared integral field and multi-object spectrograph,�?? SPIE 4008, 1193-1202 (2000)
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Night sky spectral atlas taken from [19]. The inset shows a blow up of the emission lines (shown in blue) suppressed by the aperiodic fibre Bragg grating.

Fig. 2.
Fig. 2.

Near infrared observation of a Xe arc lamp taken with the IRIS2 spectrometer at the Anglo-Australian Telescope. The intensity scale is logged in order to demonstrate the faint lorentzian wings on the brightest arc lines. The effective resolving power is 2400 such that the arc lines are almost optimally resolved. Note how the faint wings extend over more than 20 pixels.

Fig. 3.
Fig. 3.

AFBG design represented by amplitude κ (top panel) and phase θ (bottom panel) as a function of fibre axis distance z.

Fig. 4.
Fig. 4.

Comparison of reflection spectrum of AFBG#2 (top panel) with targetted OH lines (bottom panel). See Table 1 for details on the remarkable alignment between target OH lines and the suppression bands. The suppression band at 1554.0 nm has been widened to include two closely spaced, bright lines.

Tables (1)

Tables Icon

Table 1. Target and measured wavelengths in the aperiodic fibre Bragg gratings

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

R p = tanh 2 κ L
κ ( z ) = π Δ n ( z ) ( 2 Λ ( n o + < n > ) )
E b z + i δ E b q ( z ) E f = 0
E f z i δ E f q * ( z ) E b = 0
q ( z ) = κ ( z ) exp [ i θ ( z ) ] .

Metrics