Abstract

We investigated the influence of periodicity, misalignment, and disorder on the magnetic resonance gap of split-ring resonators (SRRs) which are essential components of left handed-metamaterials (LHMs). The resonance of a single SRR which is induced by the split is experimentally demonstrated by comparing transmission spectra of SRR and closed ring resonator. Misaligning the SRR boards do not affect the magnetic resonance gap, while destroying the periodicity results in a narrower band gap. The disorder in SRR layers cause narrower left-handed pass band and decrease the transmission level of composite metamaterials (CMMs), which may significantly affect the performance of these LHMs.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. V. G. Veselago, �??The electrodynamics of substances with simultaneously negative values of permittivity and permeability,�?? Sov. Phys. Usp. 10, 504 (1968).
    [CrossRef]
  2. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, �??Composite medium with simultaneously negative permeability and permittivity,�?? Phys. Rev. Lett. 84, 4184 (2000).
    [CrossRef] [PubMed]
  3. R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, �??Microwave transmission through a twodimensional, isotropic, left-handed metamaterial,�?? Appl. Phys. Lett. 78, 489 (2001).
    [CrossRef]
  4. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, �??Low frequency plasmons in thin-wire structures,�?? J. Phys.: Condens. Matter 10, 4785 (1998).
    [CrossRef]
  5. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, �??Magnetism from conductors and enhanced nonlinear phenomena,�?? IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
    [CrossRef]
  6. R. A. Shelby, D. R. Smith, and S. Schultz, �??Experimental verification of a negative index of refraction,�?? Science 292, 77 (2001).
    [CrossRef] [PubMed]
  7. C. G. Parazzoli, R. B. Greegor, K. Li, B. E. Koltenbah, and M. Tanielian, �??Experimental Verification and Simulation of Negative Index of Refraction Using Snell�??s Law,�?? Phys. Rev. Lett. 90, 107401 (2003).
    [CrossRef] [PubMed]
  8. A. A. Houck, J. B. Brock, and I. L. Chuang, �??Experimental Observations of a Left-Handed Material That Obeys Snell's Law,�?? Phys. Rev. Lett. 90, 137401 (2003).
    [CrossRef] [PubMed]
  9. E. Ozbay, K. Aydin, E. Cubukcu, and M. Bayindir, �??Transmission and Reflection Properties of Composite Double Negative Metamaterials in Free Space,�?? IEEE Trans. Antennas Propag. 51, 2592 (2003).
    [CrossRef]
  10. K. Aydin, K. Guven, M. Kafesaki, L. Zhang, C. M. Soukoulis, and E. Ozbay, �??Experimental observation of true left-handed transmission peak in metamaterials,�?? Opt. Lett. (to be published).
  11. T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, �??Effective Medium Theory of Left-Handed Materials,�?? Phys. Rev. Lett. 93, 107402 (2004).
    [CrossRef] [PubMed]
  12. N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, �??Electric coupling to the magnetic resonance of split ring resonators,�?? Appl. Phys. Lett. 84, 2943 (2004).
    [CrossRef]
  13. Philippe Gay-Balmaz, and Olivier J. F. Martin, �??Electromagnetic resonances in individual and coupled split-ring resonators,�?? J. Appl. Phys. 92, 2929 (2002).
    [CrossRef]
  14. M. Bayindir, E. Cubukcu, I. Bulu, T. Tut, C. M. Soukoulis, and E. Ozbay, �??Photonic band gaps, defect characteristics, and waveguiding in two-dimensional disordered dielectric and metallic photonic crystals.�?? Phys. Rev. B. 64, 195113 (2001).
    [CrossRef]

Appl. Phys. Lett. (2)

R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, �??Microwave transmission through a twodimensional, isotropic, left-handed metamaterial,�?? Appl. Phys. Lett. 78, 489 (2001).
[CrossRef]

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, �??Electric coupling to the magnetic resonance of split ring resonators,�?? Appl. Phys. Lett. 84, 2943 (2004).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

E. Ozbay, K. Aydin, E. Cubukcu, and M. Bayindir, �??Transmission and Reflection Properties of Composite Double Negative Metamaterials in Free Space,�?? IEEE Trans. Antennas Propag. 51, 2592 (2003).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, �??Magnetism from conductors and enhanced nonlinear phenomena,�?? IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
[CrossRef]

J. Appl. Phys. (1)

Philippe Gay-Balmaz, and Olivier J. F. Martin, �??Electromagnetic resonances in individual and coupled split-ring resonators,�?? J. Appl. Phys. 92, 2929 (2002).
[CrossRef]

J. Phys.: Condens. Matter (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, �??Low frequency plasmons in thin-wire structures,�?? J. Phys.: Condens. Matter 10, 4785 (1998).
[CrossRef]

Opt. Lett. (1)

K. Aydin, K. Guven, M. Kafesaki, L. Zhang, C. M. Soukoulis, and E. Ozbay, �??Experimental observation of true left-handed transmission peak in metamaterials,�?? Opt. Lett. (to be published).

Phys. Rev. B (1)

M. Bayindir, E. Cubukcu, I. Bulu, T. Tut, C. M. Soukoulis, and E. Ozbay, �??Photonic band gaps, defect characteristics, and waveguiding in two-dimensional disordered dielectric and metallic photonic crystals.�?? Phys. Rev. B. 64, 195113 (2001).
[CrossRef]

Phys. Rev. Lett. (4)

T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, �??Effective Medium Theory of Left-Handed Materials,�?? Phys. Rev. Lett. 93, 107402 (2004).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, �??Composite medium with simultaneously negative permeability and permittivity,�?? Phys. Rev. Lett. 84, 4184 (2000).
[CrossRef] [PubMed]

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. Koltenbah, and M. Tanielian, �??Experimental Verification and Simulation of Negative Index of Refraction Using Snell�??s Law,�?? Phys. Rev. Lett. 90, 107401 (2003).
[CrossRef] [PubMed]

A. A. Houck, J. B. Brock, and I. L. Chuang, �??Experimental Observations of a Left-Handed Material That Obeys Snell's Law,�?? Phys. Rev. Lett. 90, 137401 (2003).
[CrossRef] [PubMed]

Science (1)

R. A. Shelby, D. R. Smith, and S. Schultz, �??Experimental verification of a negative index of refraction,�?? Science 292, 77 (2001).
[CrossRef] [PubMed]

Sov. Phys. Usp. (1)

V. G. Veselago, �??The electrodynamics of substances with simultaneously negative values of permittivity and permeability,�?? Sov. Phys. Usp. 10, 504 (1968).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic drawings of (a) a single split-ring resonator, (b) a single closed ring resonator, (c) periodic arrangement of split ring-resonators on dielectric boards.

Fig. 2.
Fig. 2.

Measured transmission spectra of a single split-ring resonator (blue) and closed ring resonator (red). [Inset] Schematics of experimental setup where two monopole antennas are used to measure a single SRR cell.

Fig. 3.
Fig. 3.

[Top panel] Schematic drawings of disordered split-ring resonator media with (a) disorder in z direction with randomizing the inter-plane distance az ±δz where δz ≤λ/4, (b) disorder in x direction with misalignment parameter |δx |≤λ/8, (c) increased disorder in x direction with parameter |δx |≤λ/2. [Bottom panel] Measured transmission spectra of periodic and ordered SRR medium (blue) and corresponding disordered split-ring resonator media (red).

Fig. 4.
Fig. 4.

[Top panel] Schematic drawings of intra-plane disordered SRRs with (a) | δ r|≤a/9, (b) | δ r |≤a/5 where δ r is the randomness parameter. [Bottom panel] Measured transmission spectra of ordered SRR (blue) and disordered SRR media (red), (c) Comparison of the transmission spectra for ordered and disordered SRRs where the disorder is in all 3 spatial directions.

Fig. 5.
Fig. 5.

Measured transmission spectra of periodic and ordered SRR medium (blue) and corresponding disordered split-ring resonator mediums (red).

Metrics