Abstract

We report results of measurements and calculations that help to clarify the role of surface plasmon-polariton modes in the transmission of light through thin continuous films of silver. Our experimental data show that there is an optimum silver film thickness for which transmission is maximal. We offer an explanation of this phenomenon in terms of competition between increasing absorption in the metal and increasing optical field-enhancement due to surface plasmon-polariton excitation as the metal film thickness is increased. We find no need to invoke the regeneration of evanescent waves as has recently been suggested.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
    [Crossref] [PubMed]
  2. J.M. Williams, “Some Problems with Negative Refraction,” Phys. Rev. Lett. 87, 249703 (2001).
    [Crossref] [PubMed]
  3. G. W. ’t Hooft, “Comment on “Negative Refraction Makes a Perfect Lens,” Phys. Rev. Lett. 87, 249701 (2001).
    [Crossref] [PubMed]
  4. N. Garcia and M. Nieto-Vesperinas, “Left-Handed Materials Do Not Make a Perfect Lens,” Phys. Rev. Lett. 88, 207403 (2002).
    [Crossref] [PubMed]
  5. N. Fang, Z. W. Liu, T. J. Yen, and X. Zhang, “Regenerating evanescent waves from a silver superlens,” Opt. Express 11, 682–687 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-7-682
    [Crossref] [PubMed]
  6. Z. Liu, N. Fang, T. J. Yen, and X. Zhang, “Rapid growth of evanescent wave by a silver superlens,” Appl. Phys. Lett. 83, 5184–5186 (2003).
    [Crossref]
  7. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [Crossref] [PubMed]
  8. R. W. Gruhlke, W. R. Holland, and D. G. Hall, Surface-plasmon cross coupling in molecular fluorescence near a corrugated thin film,” Phys. Rev. Lett. 56, 2838–2841 (1986).
    [Crossref] [PubMed]
  9. R. W. Gruhlke and D. G. Hall, “Transmission of molecular fluorescence through a thin metal-film by surface-plasmons,” Appl. Phys. Lett. 53, 1041–1042 (1988).
    [Crossref]
  10. D. K. Gifford and D. G. Hall, “Emission through one of two metal electrodes of an organic light-emitting diode via surface-plasmon cross coupling,” Appl. Phys. Lett. 81, 4315–4317 (2002).
    [Crossref]
  11. D. K. Gifford and D. G. Hall, “Extraordinary transmission of organic photoluminescence through an otherwise opaque metal layer via surface plasmon cross coupling,” Appl. Phys. Lett. 80, 3679–3681 (2002).
    [Crossref]
  12. N. Bonod, S. Enoch, L. Li, E. Popov, and M. Neviere, “Resonant optical transmission through thin metallic films with and without holes,” Opt. Express 11, 482–490 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-5-482
    [Crossref] [PubMed]
  13. S. Wedge, I. R. Hooper, I. Sage, and W. L. Barnes, “Light emission through a corrugated metal film: The role of cross-coupled surface plasmon polaritons,” Phys. Rev. B. 69, 245418 (2004).
    [Crossref]
  14. S. Ushioda, J. E. Rutledge, and R. M. Pierce, “Prism-coupled light-emission from tunnel-junctions,” Phys. Rev. Lett. 54, 224–226 (1985).
    [Crossref] [PubMed]
  15. R. Dragila, B. Luther-Davies, and S. Vukovic, “High transparency of classically opaque metallic-films” Phys. Rev. Lett. 55, 1117–1120 (1985).
    [Crossref] [PubMed]
  16. I. Avrutsky, Y. Zhao, and V. Kochergin, “Surface-plasmon-assisted resonant tunneling of light through a periodically corrugated thin metal film,” Opt. Lett. 25, 595–597 (2000).
    [Crossref]
  17. J. Chandezon, M. T. Dupuis, G. Cornet, and D. Maystre, “Multicoated gratings — a differential formalism applicable in the entire optical region,” J. Opt. Soc. Am. 72, 839–846 (1982).
    [Crossref]
  18. E. L. Wood, J. R. Sambles, N. P. Cotter, and S.C. Kitson, “Diffraction grating characterization using multiple-wavelength excitation of surface-plasmon polaritons” J. Mod. Opt. 42, 1343–1349 (1995).
    [Crossref]
  19. U. Schröter and D. Heitmann, “Grating couplers for surface plasmons excited on thin metal films in the Kretschmann-Raether configuration,” Phys. Rev. B. 60, 4992–4999 (1999).
    [Crossref]
  20. I. R. Hooper and J. R. Sambles, “Surface plasmon polaritons on thin-slab metal gratings,” Phys. Rev. B. 67, 235404 (2003).
    [Crossref]
  21. E. Kretschmann, “Die bestimmung optischer Konstanten von Metallen durch Auregung von Oberflächenplasmaschwingungen,” Z. Phys. 241, 313–324 (1971).
    [Crossref]
  22. S. Herminghaus, M. Klopfleisch, and H. J. Schmidt, “Attenuated total reflectance as a quantum interference phenomenon,” Opt. Lett. 19, 293–295 (1994).
    [Crossref] [PubMed]
  23. N. P. K. Cotter, T. W. Preist, and J. R. Sambles, “Scattering-matrix approach to multilayer diffraction” J. Opt. Soc. Am. A. 12, 1097–1103 (1995).
    [Crossref]
  24. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002).
    [Crossref] [PubMed]
  25. S. L. Westcott, J. B. Jackson, C. Radloff, and N. J. Halas, “Relative contributions to the plasmon line shape of metal nanoshells,” Phys. Rev. B. 66, 155431 (2002).
    [Crossref]

2004 (1)

S. Wedge, I. R. Hooper, I. Sage, and W. L. Barnes, “Light emission through a corrugated metal film: The role of cross-coupled surface plasmon polaritons,” Phys. Rev. B. 69, 245418 (2004).
[Crossref]

2003 (5)

N. Bonod, S. Enoch, L. Li, E. Popov, and M. Neviere, “Resonant optical transmission through thin metallic films with and without holes,” Opt. Express 11, 482–490 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-5-482
[Crossref] [PubMed]

N. Fang, Z. W. Liu, T. J. Yen, and X. Zhang, “Regenerating evanescent waves from a silver superlens,” Opt. Express 11, 682–687 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-7-682
[Crossref] [PubMed]

Z. Liu, N. Fang, T. J. Yen, and X. Zhang, “Rapid growth of evanescent wave by a silver superlens,” Appl. Phys. Lett. 83, 5184–5186 (2003).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

I. R. Hooper and J. R. Sambles, “Surface plasmon polaritons on thin-slab metal gratings,” Phys. Rev. B. 67, 235404 (2003).
[Crossref]

2002 (5)

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002).
[Crossref] [PubMed]

S. L. Westcott, J. B. Jackson, C. Radloff, and N. J. Halas, “Relative contributions to the plasmon line shape of metal nanoshells,” Phys. Rev. B. 66, 155431 (2002).
[Crossref]

N. Garcia and M. Nieto-Vesperinas, “Left-Handed Materials Do Not Make a Perfect Lens,” Phys. Rev. Lett. 88, 207403 (2002).
[Crossref] [PubMed]

D. K. Gifford and D. G. Hall, “Emission through one of two metal electrodes of an organic light-emitting diode via surface-plasmon cross coupling,” Appl. Phys. Lett. 81, 4315–4317 (2002).
[Crossref]

D. K. Gifford and D. G. Hall, “Extraordinary transmission of organic photoluminescence through an otherwise opaque metal layer via surface plasmon cross coupling,” Appl. Phys. Lett. 80, 3679–3681 (2002).
[Crossref]

2001 (2)

J.M. Williams, “Some Problems with Negative Refraction,” Phys. Rev. Lett. 87, 249703 (2001).
[Crossref] [PubMed]

G. W. ’t Hooft, “Comment on “Negative Refraction Makes a Perfect Lens,” Phys. Rev. Lett. 87, 249701 (2001).
[Crossref] [PubMed]

2000 (2)

1999 (1)

U. Schröter and D. Heitmann, “Grating couplers for surface plasmons excited on thin metal films in the Kretschmann-Raether configuration,” Phys. Rev. B. 60, 4992–4999 (1999).
[Crossref]

1995 (2)

E. L. Wood, J. R. Sambles, N. P. Cotter, and S.C. Kitson, “Diffraction grating characterization using multiple-wavelength excitation of surface-plasmon polaritons” J. Mod. Opt. 42, 1343–1349 (1995).
[Crossref]

N. P. K. Cotter, T. W. Preist, and J. R. Sambles, “Scattering-matrix approach to multilayer diffraction” J. Opt. Soc. Am. A. 12, 1097–1103 (1995).
[Crossref]

1994 (1)

1988 (1)

R. W. Gruhlke and D. G. Hall, “Transmission of molecular fluorescence through a thin metal-film by surface-plasmons,” Appl. Phys. Lett. 53, 1041–1042 (1988).
[Crossref]

1986 (1)

R. W. Gruhlke, W. R. Holland, and D. G. Hall, Surface-plasmon cross coupling in molecular fluorescence near a corrugated thin film,” Phys. Rev. Lett. 56, 2838–2841 (1986).
[Crossref] [PubMed]

1985 (2)

S. Ushioda, J. E. Rutledge, and R. M. Pierce, “Prism-coupled light-emission from tunnel-junctions,” Phys. Rev. Lett. 54, 224–226 (1985).
[Crossref] [PubMed]

R. Dragila, B. Luther-Davies, and S. Vukovic, “High transparency of classically opaque metallic-films” Phys. Rev. Lett. 55, 1117–1120 (1985).
[Crossref] [PubMed]

1982 (1)

1971 (1)

E. Kretschmann, “Die bestimmung optischer Konstanten von Metallen durch Auregung von Oberflächenplasmaschwingungen,” Z. Phys. 241, 313–324 (1971).
[Crossref]

’t Hooft, G. W.

G. W. ’t Hooft, “Comment on “Negative Refraction Makes a Perfect Lens,” Phys. Rev. Lett. 87, 249701 (2001).
[Crossref] [PubMed]

Avrutsky, I.

Barnes, W. L.

S. Wedge, I. R. Hooper, I. Sage, and W. L. Barnes, “Light emission through a corrugated metal film: The role of cross-coupled surface plasmon polaritons,” Phys. Rev. B. 69, 245418 (2004).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Bonod, N.

Chandezon, J.

Cornet, G.

Cotter, N. P.

E. L. Wood, J. R. Sambles, N. P. Cotter, and S.C. Kitson, “Diffraction grating characterization using multiple-wavelength excitation of surface-plasmon polaritons” J. Mod. Opt. 42, 1343–1349 (1995).
[Crossref]

Cotter, N. P. K.

N. P. K. Cotter, T. W. Preist, and J. R. Sambles, “Scattering-matrix approach to multilayer diffraction” J. Opt. Soc. Am. A. 12, 1097–1103 (1995).
[Crossref]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Dragila, R.

R. Dragila, B. Luther-Davies, and S. Vukovic, “High transparency of classically opaque metallic-films” Phys. Rev. Lett. 55, 1117–1120 (1985).
[Crossref] [PubMed]

Dupuis, M. T.

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Enoch, S.

Fang, N.

Feldmann, J.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002).
[Crossref] [PubMed]

Franzl, T.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002).
[Crossref] [PubMed]

Garcia, N.

N. Garcia and M. Nieto-Vesperinas, “Left-Handed Materials Do Not Make a Perfect Lens,” Phys. Rev. Lett. 88, 207403 (2002).
[Crossref] [PubMed]

Gifford, D. K.

D. K. Gifford and D. G. Hall, “Emission through one of two metal electrodes of an organic light-emitting diode via surface-plasmon cross coupling,” Appl. Phys. Lett. 81, 4315–4317 (2002).
[Crossref]

D. K. Gifford and D. G. Hall, “Extraordinary transmission of organic photoluminescence through an otherwise opaque metal layer via surface plasmon cross coupling,” Appl. Phys. Lett. 80, 3679–3681 (2002).
[Crossref]

Gruhlke, R. W.

R. W. Gruhlke and D. G. Hall, “Transmission of molecular fluorescence through a thin metal-film by surface-plasmons,” Appl. Phys. Lett. 53, 1041–1042 (1988).
[Crossref]

R. W. Gruhlke, W. R. Holland, and D. G. Hall, Surface-plasmon cross coupling in molecular fluorescence near a corrugated thin film,” Phys. Rev. Lett. 56, 2838–2841 (1986).
[Crossref] [PubMed]

Halas, N. J.

S. L. Westcott, J. B. Jackson, C. Radloff, and N. J. Halas, “Relative contributions to the plasmon line shape of metal nanoshells,” Phys. Rev. B. 66, 155431 (2002).
[Crossref]

Hall, D. G.

D. K. Gifford and D. G. Hall, “Emission through one of two metal electrodes of an organic light-emitting diode via surface-plasmon cross coupling,” Appl. Phys. Lett. 81, 4315–4317 (2002).
[Crossref]

D. K. Gifford and D. G. Hall, “Extraordinary transmission of organic photoluminescence through an otherwise opaque metal layer via surface plasmon cross coupling,” Appl. Phys. Lett. 80, 3679–3681 (2002).
[Crossref]

R. W. Gruhlke and D. G. Hall, “Transmission of molecular fluorescence through a thin metal-film by surface-plasmons,” Appl. Phys. Lett. 53, 1041–1042 (1988).
[Crossref]

R. W. Gruhlke, W. R. Holland, and D. G. Hall, Surface-plasmon cross coupling in molecular fluorescence near a corrugated thin film,” Phys. Rev. Lett. 56, 2838–2841 (1986).
[Crossref] [PubMed]

Heitmann, D.

U. Schröter and D. Heitmann, “Grating couplers for surface plasmons excited on thin metal films in the Kretschmann-Raether configuration,” Phys. Rev. B. 60, 4992–4999 (1999).
[Crossref]

Herminghaus, S.

Holland, W. R.

R. W. Gruhlke, W. R. Holland, and D. G. Hall, Surface-plasmon cross coupling in molecular fluorescence near a corrugated thin film,” Phys. Rev. Lett. 56, 2838–2841 (1986).
[Crossref] [PubMed]

Hooper, I. R.

S. Wedge, I. R. Hooper, I. Sage, and W. L. Barnes, “Light emission through a corrugated metal film: The role of cross-coupled surface plasmon polaritons,” Phys. Rev. B. 69, 245418 (2004).
[Crossref]

I. R. Hooper and J. R. Sambles, “Surface plasmon polaritons on thin-slab metal gratings,” Phys. Rev. B. 67, 235404 (2003).
[Crossref]

Jackson, J. B.

S. L. Westcott, J. B. Jackson, C. Radloff, and N. J. Halas, “Relative contributions to the plasmon line shape of metal nanoshells,” Phys. Rev. B. 66, 155431 (2002).
[Crossref]

Kitson, S.C.

E. L. Wood, J. R. Sambles, N. P. Cotter, and S.C. Kitson, “Diffraction grating characterization using multiple-wavelength excitation of surface-plasmon polaritons” J. Mod. Opt. 42, 1343–1349 (1995).
[Crossref]

Klopfleisch, M.

Kochergin, V.

Kretschmann, E.

E. Kretschmann, “Die bestimmung optischer Konstanten von Metallen durch Auregung von Oberflächenplasmaschwingungen,” Z. Phys. 241, 313–324 (1971).
[Crossref]

Li, L.

Liu, Z.

Z. Liu, N. Fang, T. J. Yen, and X. Zhang, “Rapid growth of evanescent wave by a silver superlens,” Appl. Phys. Lett. 83, 5184–5186 (2003).
[Crossref]

Liu, Z. W.

Luther-Davies, B.

R. Dragila, B. Luther-Davies, and S. Vukovic, “High transparency of classically opaque metallic-films” Phys. Rev. Lett. 55, 1117–1120 (1985).
[Crossref] [PubMed]

Maystre, D.

Mulvaney, P.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002).
[Crossref] [PubMed]

Neviere, M.

Nieto-Vesperinas, M.

N. Garcia and M. Nieto-Vesperinas, “Left-Handed Materials Do Not Make a Perfect Lens,” Phys. Rev. Lett. 88, 207403 (2002).
[Crossref] [PubMed]

Pendry, J. B.

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[Crossref] [PubMed]

Pierce, R. M.

S. Ushioda, J. E. Rutledge, and R. M. Pierce, “Prism-coupled light-emission from tunnel-junctions,” Phys. Rev. Lett. 54, 224–226 (1985).
[Crossref] [PubMed]

Popov, E.

Preist, T. W.

N. P. K. Cotter, T. W. Preist, and J. R. Sambles, “Scattering-matrix approach to multilayer diffraction” J. Opt. Soc. Am. A. 12, 1097–1103 (1995).
[Crossref]

Radloff, C.

S. L. Westcott, J. B. Jackson, C. Radloff, and N. J. Halas, “Relative contributions to the plasmon line shape of metal nanoshells,” Phys. Rev. B. 66, 155431 (2002).
[Crossref]

Rutledge, J. E.

S. Ushioda, J. E. Rutledge, and R. M. Pierce, “Prism-coupled light-emission from tunnel-junctions,” Phys. Rev. Lett. 54, 224–226 (1985).
[Crossref] [PubMed]

Sage, I.

S. Wedge, I. R. Hooper, I. Sage, and W. L. Barnes, “Light emission through a corrugated metal film: The role of cross-coupled surface plasmon polaritons,” Phys. Rev. B. 69, 245418 (2004).
[Crossref]

Sambles, J. R.

I. R. Hooper and J. R. Sambles, “Surface plasmon polaritons on thin-slab metal gratings,” Phys. Rev. B. 67, 235404 (2003).
[Crossref]

E. L. Wood, J. R. Sambles, N. P. Cotter, and S.C. Kitson, “Diffraction grating characterization using multiple-wavelength excitation of surface-plasmon polaritons” J. Mod. Opt. 42, 1343–1349 (1995).
[Crossref]

N. P. K. Cotter, T. W. Preist, and J. R. Sambles, “Scattering-matrix approach to multilayer diffraction” J. Opt. Soc. Am. A. 12, 1097–1103 (1995).
[Crossref]

Schmidt, H. J.

Schröter, U.

U. Schröter and D. Heitmann, “Grating couplers for surface plasmons excited on thin metal films in the Kretschmann-Raether configuration,” Phys. Rev. B. 60, 4992–4999 (1999).
[Crossref]

Sönnichsen, C.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002).
[Crossref] [PubMed]

Ushioda, S.

S. Ushioda, J. E. Rutledge, and R. M. Pierce, “Prism-coupled light-emission from tunnel-junctions,” Phys. Rev. Lett. 54, 224–226 (1985).
[Crossref] [PubMed]

von Plessen, G.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002).
[Crossref] [PubMed]

Vukovic, S.

R. Dragila, B. Luther-Davies, and S. Vukovic, “High transparency of classically opaque metallic-films” Phys. Rev. Lett. 55, 1117–1120 (1985).
[Crossref] [PubMed]

Wedge, S.

S. Wedge, I. R. Hooper, I. Sage, and W. L. Barnes, “Light emission through a corrugated metal film: The role of cross-coupled surface plasmon polaritons,” Phys. Rev. B. 69, 245418 (2004).
[Crossref]

Westcott, S. L.

S. L. Westcott, J. B. Jackson, C. Radloff, and N. J. Halas, “Relative contributions to the plasmon line shape of metal nanoshells,” Phys. Rev. B. 66, 155431 (2002).
[Crossref]

Wilk, T.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002).
[Crossref] [PubMed]

Williams, J.M.

J.M. Williams, “Some Problems with Negative Refraction,” Phys. Rev. Lett. 87, 249703 (2001).
[Crossref] [PubMed]

Wilson, O.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002).
[Crossref] [PubMed]

Wood, E. L.

E. L. Wood, J. R. Sambles, N. P. Cotter, and S.C. Kitson, “Diffraction grating characterization using multiple-wavelength excitation of surface-plasmon polaritons” J. Mod. Opt. 42, 1343–1349 (1995).
[Crossref]

Yen, T. J.

Zhang, X.

Zhao, Y.

Appl. Phys. Lett. (4)

R. W. Gruhlke and D. G. Hall, “Transmission of molecular fluorescence through a thin metal-film by surface-plasmons,” Appl. Phys. Lett. 53, 1041–1042 (1988).
[Crossref]

D. K. Gifford and D. G. Hall, “Emission through one of two metal electrodes of an organic light-emitting diode via surface-plasmon cross coupling,” Appl. Phys. Lett. 81, 4315–4317 (2002).
[Crossref]

D. K. Gifford and D. G. Hall, “Extraordinary transmission of organic photoluminescence through an otherwise opaque metal layer via surface plasmon cross coupling,” Appl. Phys. Lett. 80, 3679–3681 (2002).
[Crossref]

Z. Liu, N. Fang, T. J. Yen, and X. Zhang, “Rapid growth of evanescent wave by a silver superlens,” Appl. Phys. Lett. 83, 5184–5186 (2003).
[Crossref]

J. Mod. Opt. (1)

E. L. Wood, J. R. Sambles, N. P. Cotter, and S.C. Kitson, “Diffraction grating characterization using multiple-wavelength excitation of surface-plasmon polaritons” J. Mod. Opt. 42, 1343–1349 (1995).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A. (1)

N. P. K. Cotter, T. W. Preist, and J. R. Sambles, “Scattering-matrix approach to multilayer diffraction” J. Opt. Soc. Am. A. 12, 1097–1103 (1995).
[Crossref]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. B. (4)

S. L. Westcott, J. B. Jackson, C. Radloff, and N. J. Halas, “Relative contributions to the plasmon line shape of metal nanoshells,” Phys. Rev. B. 66, 155431 (2002).
[Crossref]

U. Schröter and D. Heitmann, “Grating couplers for surface plasmons excited on thin metal films in the Kretschmann-Raether configuration,” Phys. Rev. B. 60, 4992–4999 (1999).
[Crossref]

I. R. Hooper and J. R. Sambles, “Surface plasmon polaritons on thin-slab metal gratings,” Phys. Rev. B. 67, 235404 (2003).
[Crossref]

S. Wedge, I. R. Hooper, I. Sage, and W. L. Barnes, “Light emission through a corrugated metal film: The role of cross-coupled surface plasmon polaritons,” Phys. Rev. B. 69, 245418 (2004).
[Crossref]

Phys. Rev. Lett. (8)

S. Ushioda, J. E. Rutledge, and R. M. Pierce, “Prism-coupled light-emission from tunnel-junctions,” Phys. Rev. Lett. 54, 224–226 (1985).
[Crossref] [PubMed]

R. Dragila, B. Luther-Davies, and S. Vukovic, “High transparency of classically opaque metallic-films” Phys. Rev. Lett. 55, 1117–1120 (1985).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[Crossref] [PubMed]

J.M. Williams, “Some Problems with Negative Refraction,” Phys. Rev. Lett. 87, 249703 (2001).
[Crossref] [PubMed]

G. W. ’t Hooft, “Comment on “Negative Refraction Makes a Perfect Lens,” Phys. Rev. Lett. 87, 249701 (2001).
[Crossref] [PubMed]

N. Garcia and M. Nieto-Vesperinas, “Left-Handed Materials Do Not Make a Perfect Lens,” Phys. Rev. Lett. 88, 207403 (2002).
[Crossref] [PubMed]

R. W. Gruhlke, W. R. Holland, and D. G. Hall, Surface-plasmon cross coupling in molecular fluorescence near a corrugated thin film,” Phys. Rev. Lett. 56, 2838–2841 (1986).
[Crossref] [PubMed]

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002).
[Crossref] [PubMed]

Z. Phys. (1)

E. Kretschmann, “Die bestimmung optischer Konstanten von Metallen durch Auregung von Oberflächenplasmaschwingungen,” Z. Phys. 241, 313–324 (1971).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Geometry of the experiment (inset) and the intensity of the diffracted orders measured for a silver film with thickness d=38 nm. The silver coated grating was produced on a planar substrate that was subsequently optically contacted onto the prism. The solid lines represent the simulation carried out using the following fitting parameters: grating amplitude a=6.7nm, pitch p=380nm, εAg=-11.15+0.45i. The grating was assumed to be sinusoidal having a profile of the form y(x)=a0 sin(2πx/p).

Fig. 2.
Fig. 2.

Experimental data showing the power associated with the different diffracted orders ΔR 0, T 0 and T -1 as a function of silver film thickness. Data are shown as points, modelling as thin lines. The dielectric function for silver was taken as εAg =-11.68+0.48i, the mean value obtained from fitting the reflectivity data.

Fig. 3.
Fig. 3.

Calculated field-enhancement factor for the electric field Ey as a function of silver film thickness. The behaviour of the field shown in this graph is very similar to that of ΔR 0 in Fig. 2.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

k 0 sin θ ± m k g = ± k SPP
± k SPP ± m k g = ± n k 0 sin α

Metrics