Abstract

Photonic crystal fibers (PCFs) have attracted significant attention during the last years and much research has been devoted to develop fiber designs for various applications, hereunder tunable fiber devices. Recently, thermally and electrically tunable PCF devices based on liquid crystals (LCs) have been demonstrated. However, optical tuning of the LC PCF has until now not been demonstrated. Here we demonstrate an all-optical modulator, which utilizes a pulsed 532nm laser to modulate the spectral position of the bandgaps in a photonic crystal fiber infiltrated with a dye-doped nematic liquid crystal. We demonstrate a modulation frequency of 2kHz for a moderate pump power of 2–3mW and describe two pump pulse regimes in which there is an order of magnitude difference between the decay times.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. Windeler & A. Hale, �??Microstructured optical fiber devices,�?? Opt. Express 9, 698-713 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-698">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-698</a>
    [CrossRef] [PubMed]
  2. R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, "Tunable photonic band gap fiber," in OSA Trends in Optics and Photonics (TOPS) 70, Optical Fiber Communication Conference Technical Digest, Postconference Edition (Optical Society of America, Washington, DC, 2002) 466-468
  3. T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, "Optical devices based on liquid crystal photonic bandgap fibres," Opt. Express 11, 2589-2596 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20</a>
    [CrossRef] [PubMed]
  4. M. W. Haakestad, T. T. Larsen, M. D. Nielsen, H. E. Engan, and A. Bjarklev,"Electrically Tunable Fiber Device Based on a Nematic Liquid Crystal Filled Photonic Crystal Fiber," ECOC 2004, postdeadline paper Th4.3.2, Stockholm, Sweden.
  5. F. Du, Y.Q. Lu and S.T. Wu, �??Electrically tunable liquid-crystal photonic crystal fiber,�?? Appl. Phys. Lett. 85, 2181-2183 (2004).
    [CrossRef]
  6. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, 2nd edition, (Clarendon Press, Oxford, 1993).
  7. Y.-J. Wang and G. O. Carlisle, �??Optical properties of disperse-red-1-doped nematic liquid crystal,�?? J. Materials Science: Materials in electronics 13, 173-178 (2002).
    [CrossRef]
  8. J. Li and S.T. Wu, �??Extended Cauchy equations for the refractive indices of liquid crystals,�?? J. Appl. Phys. 95, 896-901 (2004)
    [CrossRef]
  9. J. Li, S. Gauza and S. T. Wu, �??Temperature effect on liquid crystal refractive indices,�?? J. Appl. Phys. 96, 19- 24 (2004).
    [CrossRef]
  10. A. K. Abeeluck, N.M. Litchinitser, C. Headley and B. J. Eggleton, �??Analysis of spectral characteristics o photonic bandgap waveguides,�?? Opt. Express 10, 1320-1333 (2002).<a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-23-1320">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-23-1320</a>
    [CrossRef] [PubMed]
  11. N. M. Litchinitser, S. C. Dunn, P. E. Steinvurzel, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, "Application of an ARROW model for designing tunable photonic devices," Opt. Express 12, 1540-1550 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1540">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1540</a>
    [CrossRef] [PubMed]
  12. J. Laegsgaard, �??Gap formation and guided modes in photonic bandgap fibres awith high-index rods,�?? J. Opt. A: Pure and Appl. Opt. 6, 798-804 (2004).
    [CrossRef]
  13. C. Hu and J. R. Whinnery, �??Losses of a nematic liquid-crystal optical waveguide,�?? J. Opt. Soc. Am 64, 1424-1432 (1974).
    [CrossRef]
  14. M. Green and S. J. Madden, �??Low loss nematic liquid crystal cored fiber waveguides,�?? Appl. Opt. 28, 5202- 5203 (1989).
    [CrossRef] [PubMed]
  15. D. Ferrarini, L. Vincetti, M. Zoboli, A. Cucinotta, and S. Selleri, �??Leakage properties of photonic crystal fibers,�?? Opt. Express 10, 1314-1319 (2002). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-23-1314">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-23-1314</a>
    [CrossRef] [PubMed]
  16. N. A. Mortensen, �??Effective area of photonic crystal fibers,�?? Opt. Express 10, 341-348 (2002), <a href= "htp://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-7-341">htp://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-7-341</a>
    [CrossRef] [PubMed]
  17. J. Riishede, J. Lægsgaard, J. Broeng, and A. Bjarklev, �??All-silica photonic bandgap fibre with zero dispersion and a large mode area at 730nm,�?? J. Opt. A: Pure Appl. Opt. 6, 667�??670 (2004).
    [CrossRef]
  18. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T.A. Birks, and P. St. J. Russell, �??Highly birefringent photonic crystal fibers,�?? Opt. Lett. 25, 1325-1327 (2000).
    [CrossRef]
  19. J. R. Folkenberg, M. D. Nielsen, N. A. Mortensen, C. Jakobsen, and H. R. Simonsen, "Polarization maintaining large mode area photonic crystal fiber," Opt. Express 12, 956-960 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-956">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-956</a>
    [CrossRef] [PubMed]
  20. D. Armitage and S. M. Delwart, �??Nonlinear optical effects in the nematic phase,�?? Mol. Cryst. Liq. Cryst. 122, 59-75 (1985).
    [CrossRef]
  21. I. C. Khoo, Liquid Crystals: Physical properties and nonlinear optical phenomena (Wiley Interscience, New York, 1995).
  22. D. Armitage, �??Thermal properties and heat flow in the laser addressed liquid-crystal display,�?? J. Appl. Phys. 52, 1294-1300 (1981).
    [CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

F. Du, Y.Q. Lu and S.T. Wu, �??Electrically tunable liquid-crystal photonic crystal fiber,�?? Appl. Phys. Lett. 85, 2181-2183 (2004).
[CrossRef]

ECOC 2004 (1)

M. W. Haakestad, T. T. Larsen, M. D. Nielsen, H. E. Engan, and A. Bjarklev,"Electrically Tunable Fiber Device Based on a Nematic Liquid Crystal Filled Photonic Crystal Fiber," ECOC 2004, postdeadline paper Th4.3.2, Stockholm, Sweden.

J. Appl. Phys. (3)

J. Li and S.T. Wu, �??Extended Cauchy equations for the refractive indices of liquid crystals,�?? J. Appl. Phys. 95, 896-901 (2004)
[CrossRef]

J. Li, S. Gauza and S. T. Wu, �??Temperature effect on liquid crystal refractive indices,�?? J. Appl. Phys. 96, 19- 24 (2004).
[CrossRef]

D. Armitage, �??Thermal properties and heat flow in the laser addressed liquid-crystal display,�?? J. Appl. Phys. 52, 1294-1300 (1981).
[CrossRef]

J. Materials Science (1)

Y.-J. Wang and G. O. Carlisle, �??Optical properties of disperse-red-1-doped nematic liquid crystal,�?? J. Materials Science: Materials in electronics 13, 173-178 (2002).
[CrossRef]

J. Opt. A: Pure and Appl. Opt. (1)

J. Laegsgaard, �??Gap formation and guided modes in photonic bandgap fibres awith high-index rods,�?? J. Opt. A: Pure and Appl. Opt. 6, 798-804 (2004).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

J. Riishede, J. Lægsgaard, J. Broeng, and A. Bjarklev, �??All-silica photonic bandgap fibre with zero dispersion and a large mode area at 730nm,�?? J. Opt. A: Pure Appl. Opt. 6, 667�??670 (2004).
[CrossRef]

J. Opt. Soc. Am (1)

C. Hu and J. R. Whinnery, �??Losses of a nematic liquid-crystal optical waveguide,�?? J. Opt. Soc. Am 64, 1424-1432 (1974).
[CrossRef]

Mol. Cryst. Liq. Cryst. (1)

D. Armitage and S. M. Delwart, �??Nonlinear optical effects in the nematic phase,�?? Mol. Cryst. Liq. Cryst. 122, 59-75 (1985).
[CrossRef]

OFC2002 (1)

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, "Tunable photonic band gap fiber," in OSA Trends in Optics and Photonics (TOPS) 70, Optical Fiber Communication Conference Technical Digest, Postconference Edition (Optical Society of America, Washington, DC, 2002) 466-468

Opt. Express (7)

T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, "Optical devices based on liquid crystal photonic bandgap fibres," Opt. Express 11, 2589-2596 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20</a>
[CrossRef] [PubMed]

B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. Windeler & A. Hale, �??Microstructured optical fiber devices,�?? Opt. Express 9, 698-713 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-698">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-698</a>
[CrossRef] [PubMed]

A. K. Abeeluck, N.M. Litchinitser, C. Headley and B. J. Eggleton, �??Analysis of spectral characteristics o photonic bandgap waveguides,�?? Opt. Express 10, 1320-1333 (2002).<a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-23-1320">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-23-1320</a>
[CrossRef] [PubMed]

N. M. Litchinitser, S. C. Dunn, P. E. Steinvurzel, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, "Application of an ARROW model for designing tunable photonic devices," Opt. Express 12, 1540-1550 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1540">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1540</a>
[CrossRef] [PubMed]

D. Ferrarini, L. Vincetti, M. Zoboli, A. Cucinotta, and S. Selleri, �??Leakage properties of photonic crystal fibers,�?? Opt. Express 10, 1314-1319 (2002). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-23-1314">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-23-1314</a>
[CrossRef] [PubMed]

N. A. Mortensen, �??Effective area of photonic crystal fibers,�?? Opt. Express 10, 341-348 (2002), <a href= "htp://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-7-341">htp://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-7-341</a>
[CrossRef] [PubMed]

J. R. Folkenberg, M. D. Nielsen, N. A. Mortensen, C. Jakobsen, and H. R. Simonsen, "Polarization maintaining large mode area photonic crystal fiber," Opt. Express 12, 956-960 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-956">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-956</a>
[CrossRef] [PubMed]

Opt. Lett. (1)

Other (2)

P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, 2nd edition, (Clarendon Press, Oxford, 1993).

I. C. Khoo, Liquid Crystals: Physical properties and nonlinear optical phenomena (Wiley Interscience, New York, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1.

(a) Optical micrograph of the end facet of the PCF used in the experiment. (b) Polarized micrographs of a silica capillary (inner diameter=5µm) infiltrated with the nematic LC E7. Capillary is angled at 0 degrees (top right) and at 45 degrees (bottom right) relative to the axis of the polarizer.

Fig. 2.
Fig. 2.

Molecular structure of the compounds used in nematic LC E7.

Fig. 3.
Fig. 3.

Ordinary and extra-ordinary refractive indices as function of wavelength of nematic LC E7. The experimental points have been measured using a “Multi-wavelength Abbe refractometer” (Atago model DR-M4) and the theoretical curves have been calculated using the extended Cauchy equations for anisotropic materials.

Fig. 4.
Fig. 4.

Ordinary and extraordinary refractive indices as function of temperature of nematic LC E7. The experimental points have been measured using a “Multi-wavelength Abbe refractometer” (Atago model DR-M4) and the theoretical curves have been calculated using the four parameter model.

Fig. 5.
Fig. 5.

Calculated average refractive index at 67°C (isotropic phase) of nematic LC E7. The refractive index has been calculated from the experimental data in the nematic phase using both the extended Cauchy equations and the four-parameter model.

Fig. 6.
Fig. 6.

Transmission spectrum of the LCPBG fiber measured at 67°C (solid black line), which is the isotropic phase of the LC. The PCF was infiltrated for 10mm of the length with the nematic LC E7. The spectral position of the long-wavelength side of the bandgap edges was calculated using a simple analytical expression for the cut-off wavelengths. These are marked with the vertical red dotted lines.

Fig. 7.
Fig. 7.

Transmission spectrum of the LCPBG fiber measured at 40°C (solid black line), which is in the nematic phase of the LC. The PCF was infiltrated for 10mm of the length with E7. The spectral position of the long-wavelength side of the bandgap edges was calculated numerically using a simple cut-off approach for an anisotropic cylindrical waveguide. These are marked as the vertical red dotted lines.

Fig. 8.
Fig. 8.

Thermal tuning of a bandgap located around 545nm. The spectral position of the bandgap is tuned by varying the temperature from 44°C to 56°C, which is just below the clearing point of the LC (58°C). The tuning sensitivity is mainly linked to the refractive index gradient of the ordinary refractive index no. Around room temperature, this gradient is close to zero and only a small tuning sensitivity is observed.

Fig. 9.
Fig. 9.

Thermal tuning of a bandgap located around 1400nm. The spectral position of the bandgap is tuned by varying the temperature from 44°C to 56°C, which is just below the clearing point of the LC (58°C). The tuning sensitivity is mainly linked to the refractive index gradient of the ordinary refractive index no. Around room temperature, this gradient is close to zero and only a small tuning sensitivity is observed.

Fig. 10.
Fig. 10.

Molecular structure of Disperse Red 1.

Fig. 11.
Fig. 11.

Doping the LC with the dye Disperse Red 1 (DR1), enhances the absorption around 500nm, but does not alter the alignment and the transmission above the absorption wavelengths of the dye. Transmission spectra with an un-doped LC (top), and a doped LC (bottom).

Fig. 12.
Fig. 12.

Experimental setup for measuring the dynamics of the dye-doped LCPBG fiber. The same setup is used for measuring the polarization sensitivity of the bandgaps.

Fig. 13.
Fig. 13.

Oscilloscope traces of the time-domain response of the 1620nm CW polarized laser source, which is coupled into the dye-doped LCPBG fiber. The traces shows the response of the 1620nm CW source when the pump laser is square-wave modulated with f=100Hz (a), f=1kHz (b) and f=2kHz (c). The estimated pump power was 2–3mW.

Fig. 14.
Fig. 14.

Polarization sensitivity of the transmission at the edge of the bandgap centered around 1400nm in Fig. 7. Maximizing and minimizing the transmission at 1620nm identified polarization 1 and Polarization 2, respectively.

Fig. 15.
Fig. 15.

Differential Group Delay (DGD) measured on the LCPBG fiber with the polarization sensitive bandgap edges shown on Fig. 14. The DGD was measured using the HP/Agilent 8509 Polarization analyzer and the HP 8168C tunable laser. A relatively small temperature sensitive DGD is measured on the edge of the bandgap, but due to the short length of the LCPBG fiber, this translates into a rather high birefringence on the order of 10-3.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

n e , o ( λ ) = A e , o + B e . o λ 2 + C e , o λ 4
n e ( T ) = A BT + 2 ( Δ n ) o 3 ( 1 T T c ) β
n o ( T ) = A BT ( Δ n ) o 3 ( 1 T T c ) β
n ( T ) = A BT
Δ n ( T ) = ( Δ n ) o ( 1 T T c ) β
λ m = 2 d m + 1 2 n 2 2 n 1 2
λ d 2 n 2 2 n 1 2
τ TD = C p ρ λ T L 2

Metrics