X. L. Yang, L. Z. Cai, Y. R. Wang, and Q. Liu, “Interference of four umbrellalike beams by a diffractive beam splitter for fabrication of two-dimensional square and trigonal lattices,” Opt. Lett. 28, 453–455 (2003).

[CrossRef]
[PubMed]

X. L. Yang, L. Z. Cai, and Q. Liu, “Theoretical bandgap modeling of two-dimensional triangular photonic crystals formed by interference technique of three-noncoplanar beams,” Opt. Express 11, 1050–1055 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-9-1050

[CrossRef]
[PubMed]

A. R. Parker, R. C. McPhedran, D. R. McKenzie, L. C. Botten, and N. P. Nicorvici, “Photonic engineering: Aphrodite’s iridescence,” Nature 409, 36–37 (2001).

[CrossRef]
[PubMed]

L. Z. Cai, X. L. Yang, and Y. R. Wang, “Formation of a microfiber bundle by interference of three noncoplanar beams,” Opt. Lett. 26, 1858–1860 (2001).

[CrossRef]

A. Shishido, Ivan B. Diviliansky, I. C. Khoo, and T. S. Mayer, “Direct Fabrication of Two-Dimensional Titania Arrays Using Interference Photolithography,” Appl. Phys. Lett. 79, 3332–3334 (2001).

[CrossRef]

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173

[CrossRef]
[PubMed]

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).

[CrossRef]
[PubMed]

A. J. Ward and J. B. Pendry, “Calculating photonic Green’s functions using a nonorthogonal finite-difference time-domain method,” Phys. Rev. B 58, 7252–7259 (1998).

[CrossRef]

V. Berger, O. Gauthier–Lafaye, and E. Costard, “Photonic band gaps and holography,” J. Appl. Phys. 82, 60–64 (1997).

[CrossRef]

D. Cassagne, C. Jouanin, and D. Bertho, “Hexagonal photonic-band-gap structures,” Phys. Rev. B 53, 7134–7142 (1996).

[CrossRef]

C. M. Anderson and K. P. Giapis, “Larger two-dimensional photonic band gaps,” Phys. Rev. Lett. 77, 2949–2952 (1996).

[CrossRef]
[PubMed]

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).

[CrossRef]
[PubMed]

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).

[CrossRef]

P. R. Villeneuve and M. Piche, “Photonic band gaps in two-dimensional square and hexagonal lattices,” Phys. Rev. B 46, 4969–4972 (1992).

[CrossRef]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).

[CrossRef]
[PubMed]

C. M. Anderson and K. P. Giapis, “Larger two-dimensional photonic band gaps,” Phys. Rev. Lett. 77, 2949–2952 (1996).

[CrossRef]
[PubMed]

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).

[CrossRef]

V. Berger, O. Gauthier–Lafaye, and E. Costard, “Photonic band gaps and holography,” J. Appl. Phys. 82, 60–64 (1997).

[CrossRef]

D. Cassagne, C. Jouanin, and D. Bertho, “Hexagonal photonic-band-gap structures,” Phys. Rev. B 53, 7134–7142 (1996).

[CrossRef]

A. R. Parker, R. C. McPhedran, D. R. McKenzie, L. C. Botten, and N. P. Nicorvici, “Photonic engineering: Aphrodite’s iridescence,” Nature 409, 36–37 (2001).

[CrossRef]
[PubMed]

Richard Brent, Algorithms for minimization without derivatives (Prentice-Hall, 1973; republished by Dover in paperback, 2002).

X. L. Yang, L. Z. Cai, Y. R. Wang, and Q. Liu, “Interference of four umbrellalike beams by a diffractive beam splitter for fabrication of two-dimensional square and trigonal lattices,” Opt. Lett. 28, 453–455 (2003).

[CrossRef]
[PubMed]

X. L. Yang, L. Z. Cai, and Q. Liu, “Theoretical bandgap modeling of two-dimensional triangular photonic crystals formed by interference technique of three-noncoplanar beams,” Opt. Express 11, 1050–1055 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-9-1050

[CrossRef]
[PubMed]

L. Z. Cai, X. L. Yang, and Y. R. Wang, “Formation of a microfiber bundle by interference of three noncoplanar beams,” Opt. Lett. 26, 1858–1860 (2001).

[CrossRef]

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).

[CrossRef]
[PubMed]

D. Cassagne, C. Jouanin, and D. Bertho, “Hexagonal photonic-band-gap structures,” Phys. Rev. B 53, 7134–7142 (1996).

[CrossRef]

V. Berger, O. Gauthier–Lafaye, and E. Costard, “Photonic band gaps and holography,” J. Appl. Phys. 82, 60–64 (1997).

[CrossRef]

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).

[CrossRef]
[PubMed]

A. Shishido, Ivan B. Diviliansky, I. C. Khoo, and T. S. Mayer, “Direct Fabrication of Two-Dimensional Titania Arrays Using Interference Photolithography,” Appl. Phys. Lett. 79, 3332–3334 (2001).

[CrossRef]

V. Berger, O. Gauthier–Lafaye, and E. Costard, “Photonic band gaps and holography,” J. Appl. Phys. 82, 60–64 (1997).

[CrossRef]

C. M. Anderson and K. P. Giapis, “Larger two-dimensional photonic band gaps,” Phys. Rev. Lett. 77, 2949–2952 (1996).

[CrossRef]
[PubMed]

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).

[CrossRef]
[PubMed]

D. Cassagne, C. Jouanin, and D. Bertho, “Hexagonal photonic-band-gap structures,” Phys. Rev. B 53, 7134–7142 (1996).

[CrossRef]

A. Shishido, Ivan B. Diviliansky, I. C. Khoo, and T. S. Mayer, “Direct Fabrication of Two-Dimensional Titania Arrays Using Interference Photolithography,” Appl. Phys. Lett. 79, 3332–3334 (2001).

[CrossRef]

X. L. Yang, L. Z. Cai, and Q. Liu, “Theoretical bandgap modeling of two-dimensional triangular photonic crystals formed by interference technique of three-noncoplanar beams,” Opt. Express 11, 1050–1055 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-9-1050

[CrossRef]
[PubMed]

X. L. Yang, L. Z. Cai, Y. R. Wang, and Q. Liu, “Interference of four umbrellalike beams by a diffractive beam splitter for fabrication of two-dimensional square and trigonal lattices,” Opt. Lett. 28, 453–455 (2003).

[CrossRef]
[PubMed]

A. Shishido, Ivan B. Diviliansky, I. C. Khoo, and T. S. Mayer, “Direct Fabrication of Two-Dimensional Titania Arrays Using Interference Photolithography,” Appl. Phys. Lett. 79, 3332–3334 (2001).

[CrossRef]

A. R. Parker, R. C. McPhedran, D. R. McKenzie, L. C. Botten, and N. P. Nicorvici, “Photonic engineering: Aphrodite’s iridescence,” Nature 409, 36–37 (2001).

[CrossRef]
[PubMed]

A. R. Parker, R. C. McPhedran, D. R. McKenzie, L. C. Botten, and N. P. Nicorvici, “Photonic engineering: Aphrodite’s iridescence,” Nature 409, 36–37 (2001).

[CrossRef]
[PubMed]

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton University Press, Princeton, 1995).

A. R. Parker, R. C. McPhedran, D. R. McKenzie, L. C. Botten, and N. P. Nicorvici, “Photonic engineering: Aphrodite’s iridescence,” Nature 409, 36–37 (2001).

[CrossRef]
[PubMed]

A. R. Parker, R. C. McPhedran, D. R. McKenzie, L. C. Botten, and N. P. Nicorvici, “Photonic engineering: Aphrodite’s iridescence,” Nature 409, 36–37 (2001).

[CrossRef]
[PubMed]

A. J. Ward and J. B. Pendry, “Calculating photonic Green’s functions using a nonorthogonal finite-difference time-domain method,” Phys. Rev. B 58, 7252–7259 (1998).

[CrossRef]

P. R. Villeneuve and M. Piche, “Photonic band gaps in two-dimensional square and hexagonal lattices,” Phys. Rev. B 46, 4969–4972 (1992).

[CrossRef]

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).

[CrossRef]
[PubMed]

A. Shishido, Ivan B. Diviliansky, I. C. Khoo, and T. S. Mayer, “Direct Fabrication of Two-Dimensional Titania Arrays Using Interference Photolithography,” Appl. Phys. Lett. 79, 3332–3334 (2001).

[CrossRef]

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).

[CrossRef]
[PubMed]

P. R. Villeneuve and M. Piche, “Photonic band gaps in two-dimensional square and hexagonal lattices,” Phys. Rev. B 46, 4969–4972 (1992).

[CrossRef]

X. L. Yang, L. Z. Cai, Y. R. Wang, and Q. Liu, “Interference of four umbrellalike beams by a diffractive beam splitter for fabrication of two-dimensional square and trigonal lattices,” Opt. Lett. 28, 453–455 (2003).

[CrossRef]
[PubMed]

L. Z. Cai, X. L. Yang, and Y. R. Wang, “Formation of a microfiber bundle by interference of three noncoplanar beams,” Opt. Lett. 26, 1858–1860 (2001).

[CrossRef]

A. J. Ward and J. B. Pendry, “Calculating photonic Green’s functions using a nonorthogonal finite-difference time-domain method,” Phys. Rev. B 58, 7252–7259 (1998).

[CrossRef]

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton University Press, Princeton, 1995).

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).

[CrossRef]
[PubMed]

X. L. Yang, L. Z. Cai, Y. R. Wang, and Q. Liu, “Interference of four umbrellalike beams by a diffractive beam splitter for fabrication of two-dimensional square and trigonal lattices,” Opt. Lett. 28, 453–455 (2003).

[CrossRef]
[PubMed]

X. L. Yang, L. Z. Cai, and Q. Liu, “Theoretical bandgap modeling of two-dimensional triangular photonic crystals formed by interference technique of three-noncoplanar beams,” Opt. Express 11, 1050–1055 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-9-1050

[CrossRef]
[PubMed]

L. Z. Cai, X. L. Yang, and Y. R. Wang, “Formation of a microfiber bundle by interference of three noncoplanar beams,” Opt. Lett. 26, 1858–1860 (2001).

[CrossRef]

A. Shishido, Ivan B. Diviliansky, I. C. Khoo, and T. S. Mayer, “Direct Fabrication of Two-Dimensional Titania Arrays Using Interference Photolithography,” Appl. Phys. Lett. 79, 3332–3334 (2001).

[CrossRef]

V. Berger, O. Gauthier–Lafaye, and E. Costard, “Photonic band gaps and holography,” J. Appl. Phys. 82, 60–64 (1997).

[CrossRef]

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).

[CrossRef]

A. R. Parker, R. C. McPhedran, D. R. McKenzie, L. C. Botten, and N. P. Nicorvici, “Photonic engineering: Aphrodite’s iridescence,” Nature 409, 36–37 (2001).

[CrossRef]
[PubMed]

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).

[CrossRef]
[PubMed]

X. L. Yang, L. Z. Cai, and Q. Liu, “Theoretical bandgap modeling of two-dimensional triangular photonic crystals formed by interference technique of three-noncoplanar beams,” Opt. Express 11, 1050–1055 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-9-1050

[CrossRef]
[PubMed]

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173

[CrossRef]
[PubMed]

X. L. Yang, L. Z. Cai, Y. R. Wang, and Q. Liu, “Interference of four umbrellalike beams by a diffractive beam splitter for fabrication of two-dimensional square and trigonal lattices,” Opt. Lett. 28, 453–455 (2003).

[CrossRef]
[PubMed]

L. Z. Cai, X. L. Yang, and Y. R. Wang, “Formation of a microfiber bundle by interference of three noncoplanar beams,” Opt. Lett. 26, 1858–1860 (2001).

[CrossRef]

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).

[CrossRef]
[PubMed]

A. J. Ward and J. B. Pendry, “Calculating photonic Green’s functions using a nonorthogonal finite-difference time-domain method,” Phys. Rev. B 58, 7252–7259 (1998).

[CrossRef]

D. Cassagne, C. Jouanin, and D. Bertho, “Hexagonal photonic-band-gap structures,” Phys. Rev. B 53, 7134–7142 (1996).

[CrossRef]

P. R. Villeneuve and M. Piche, “Photonic band gaps in two-dimensional square and hexagonal lattices,” Phys. Rev. B 46, 4969–4972 (1992).

[CrossRef]

C. M. Anderson and K. P. Giapis, “Larger two-dimensional photonic band gaps,” Phys. Rev. Lett. 77, 2949–2952 (1996).

[CrossRef]
[PubMed]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).

[CrossRef]
[PubMed]

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton University Press, Princeton, 1995).

Richard Brent, Algorithms for minimization without derivatives (Prentice-Hall, 1973; republished by Dover in paperback, 2002).