Abstract

A nonlinear optical, interferometric method for improving the resolution of a lithographic system by an arbitrarily large factor with high visibility is described. The technique is implemented experimentally for both two-fold and three-fold enhancement of the resolution with respect to the traditional Rayleigh limit. In these experiments, an N-photon-absorption recording medium is simulated by Nth harmonic generation followed by a CCD camera. This technique does not exploit quantum features of light; this fact suggests that the improved resolution achieved through use of “quantum lithography” results primarily from the nonlinear response of the recording medium and not from quantum features of the light field.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Lord Rayleigh, “Investigations in optics with special reference to the spectroscope,” Phil. Mag. 8, 261–274 (1879).
    [Crossref]
  2. S. R. J. Brueck, S. H. Zaidi, X. Chen, and Z. Zhang, “Interferometric lithography —from periodic arrays to arbitrary patterns,” Microelectron. Eng. 42, 145–148 (1998).
    [Crossref]
  3. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: Exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85, 2733–2736 (2000).
    [Crossref] [PubMed]
  4. G. S. Agarwal, R. W. Boyd, E. M. Nagasako, and S. J. Bentley, “Comment on ‘Quantum interferometric optical lithography: Exploiting entanglement to beat the diffraction limit’,” Phys. Rev. Lett. 86, 1389 (2001).
    [Crossref] [PubMed]
  5. G. Bjork, L.L. Sanchez-Soto, and J. Soderholm, “Entangled-state lithography: Tailoring any pattern with a single state,” Phys. Rev.Lett. 86, 4516–4519 (2001).
    [Crossref] [PubMed]
  6. C.C. Gerry, “Enhanced generation of twin single-photon states via quantum interference in parametric down-conversion: Application to two-photon quantum photolithography,” Phys. Rev. A 67, 043801 (2003).
    [Crossref]
  7. M. D’Angelo, M. V. Chekhova, and Y. Shih, “Two-photon diffraction and quantum lithography,” Phys. Rev. Lett. 87, 013602 (2001).
    [Crossref]
  8. E. J. S. Fonseca, C. H. Monken, and S. Pádua, “Measurement of the de Broglie wavelength of a multiphoton wave packet,” Phys. Rev. Lett. 82, 2868–2871 (1999).
    [Crossref]
  9. K. Edamatsu, R. Shimizu, and T. Itoh, “Measurement of the photonic de Broglie wavelength of entangled photon pairs generated by spontaneous parametric down-conversion,” Phys. Rev. Lett. 89, 213601 (2002).
    [Crossref] [PubMed]
  10. E. M. Nagasako, S. J. Bentley, R. W. Boyd, and G. S. Agarwal, “Nonclassical two-photon interferometry and lithography with high-gain optical parametric amplifiers,” Phys. Rev. A 64, 043802 (2001).
    [Crossref]
  11. E. M. Nagasako, S. J. Bentley, R. W. Boyd, and G. S. Agarwal, “Parametric downconversion vs. optical parametric amplification: A comparison of their quantum statistics,” J. Mod. Opt. 49, 529–537 (2002).
    [Crossref]
  12. H. Ooki, M. Komatsu, and M. Shibuya, “A novel super-resolution technique for optical lithography—nonlinear multiple exposure method,” Jpn. J. Appl. Phys. 33, L177–L179 (1994).
    [Crossref]
  13. E. Yablonovitch and R. B. Vrijen, “Optical projection lithography at half the Rayleigh resolution limit by two-photon exposure,” Opt. Eng. 38, 334–338 (1999).
    [Crossref]
  14. D. Korobkin and E. Yablonovitch, “Twofold spatial resolution enhancement by two-photon exposure of photographic film,” Opt. Eng. 41, 1729–1732 (2002).
    [Crossref]
  15. F. S. Cataliotti, R. Scheunemann, T. W. Hänsch, and M. Weitz, “Superresolution of pulsed multiphoton Raman transitions,” Phys. Rev. Lett. 87, 113601 (2001).
    [Crossref] [PubMed]
  16. P. Kok, A. N. Boto, D. S. Abrams, C. P. Williams, S. L. Braunstein, and J. P. Dowling, “Quantuminterferometric optical lithography: Towards arbitrary two-dimensional patterns,” Phys. Rev. A 63, 063407 (2001).
    [Crossref]

2003 (1)

C.C. Gerry, “Enhanced generation of twin single-photon states via quantum interference in parametric down-conversion: Application to two-photon quantum photolithography,” Phys. Rev. A 67, 043801 (2003).
[Crossref]

2002 (3)

K. Edamatsu, R. Shimizu, and T. Itoh, “Measurement of the photonic de Broglie wavelength of entangled photon pairs generated by spontaneous parametric down-conversion,” Phys. Rev. Lett. 89, 213601 (2002).
[Crossref] [PubMed]

E. M. Nagasako, S. J. Bentley, R. W. Boyd, and G. S. Agarwal, “Parametric downconversion vs. optical parametric amplification: A comparison of their quantum statistics,” J. Mod. Opt. 49, 529–537 (2002).
[Crossref]

D. Korobkin and E. Yablonovitch, “Twofold spatial resolution enhancement by two-photon exposure of photographic film,” Opt. Eng. 41, 1729–1732 (2002).
[Crossref]

2001 (6)

F. S. Cataliotti, R. Scheunemann, T. W. Hänsch, and M. Weitz, “Superresolution of pulsed multiphoton Raman transitions,” Phys. Rev. Lett. 87, 113601 (2001).
[Crossref] [PubMed]

P. Kok, A. N. Boto, D. S. Abrams, C. P. Williams, S. L. Braunstein, and J. P. Dowling, “Quantuminterferometric optical lithography: Towards arbitrary two-dimensional patterns,” Phys. Rev. A 63, 063407 (2001).
[Crossref]

E. M. Nagasako, S. J. Bentley, R. W. Boyd, and G. S. Agarwal, “Nonclassical two-photon interferometry and lithography with high-gain optical parametric amplifiers,” Phys. Rev. A 64, 043802 (2001).
[Crossref]

M. D’Angelo, M. V. Chekhova, and Y. Shih, “Two-photon diffraction and quantum lithography,” Phys. Rev. Lett. 87, 013602 (2001).
[Crossref]

G. S. Agarwal, R. W. Boyd, E. M. Nagasako, and S. J. Bentley, “Comment on ‘Quantum interferometric optical lithography: Exploiting entanglement to beat the diffraction limit’,” Phys. Rev. Lett. 86, 1389 (2001).
[Crossref] [PubMed]

G. Bjork, L.L. Sanchez-Soto, and J. Soderholm, “Entangled-state lithography: Tailoring any pattern with a single state,” Phys. Rev.Lett. 86, 4516–4519 (2001).
[Crossref] [PubMed]

2000 (1)

N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: Exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85, 2733–2736 (2000).
[Crossref] [PubMed]

1999 (2)

E. Yablonovitch and R. B. Vrijen, “Optical projection lithography at half the Rayleigh resolution limit by two-photon exposure,” Opt. Eng. 38, 334–338 (1999).
[Crossref]

E. J. S. Fonseca, C. H. Monken, and S. Pádua, “Measurement of the de Broglie wavelength of a multiphoton wave packet,” Phys. Rev. Lett. 82, 2868–2871 (1999).
[Crossref]

1998 (1)

S. R. J. Brueck, S. H. Zaidi, X. Chen, and Z. Zhang, “Interferometric lithography —from periodic arrays to arbitrary patterns,” Microelectron. Eng. 42, 145–148 (1998).
[Crossref]

1994 (1)

H. Ooki, M. Komatsu, and M. Shibuya, “A novel super-resolution technique for optical lithography—nonlinear multiple exposure method,” Jpn. J. Appl. Phys. 33, L177–L179 (1994).
[Crossref]

1879 (1)

Lord Rayleigh, “Investigations in optics with special reference to the spectroscope,” Phil. Mag. 8, 261–274 (1879).
[Crossref]

Abrams, D. S.

P. Kok, A. N. Boto, D. S. Abrams, C. P. Williams, S. L. Braunstein, and J. P. Dowling, “Quantuminterferometric optical lithography: Towards arbitrary two-dimensional patterns,” Phys. Rev. A 63, 063407 (2001).
[Crossref]

N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: Exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85, 2733–2736 (2000).
[Crossref] [PubMed]

Agarwal, G. S.

E. M. Nagasako, S. J. Bentley, R. W. Boyd, and G. S. Agarwal, “Parametric downconversion vs. optical parametric amplification: A comparison of their quantum statistics,” J. Mod. Opt. 49, 529–537 (2002).
[Crossref]

G. S. Agarwal, R. W. Boyd, E. M. Nagasako, and S. J. Bentley, “Comment on ‘Quantum interferometric optical lithography: Exploiting entanglement to beat the diffraction limit’,” Phys. Rev. Lett. 86, 1389 (2001).
[Crossref] [PubMed]

E. M. Nagasako, S. J. Bentley, R. W. Boyd, and G. S. Agarwal, “Nonclassical two-photon interferometry and lithography with high-gain optical parametric amplifiers,” Phys. Rev. A 64, 043802 (2001).
[Crossref]

Bentley, S. J.

E. M. Nagasako, S. J. Bentley, R. W. Boyd, and G. S. Agarwal, “Parametric downconversion vs. optical parametric amplification: A comparison of their quantum statistics,” J. Mod. Opt. 49, 529–537 (2002).
[Crossref]

E. M. Nagasako, S. J. Bentley, R. W. Boyd, and G. S. Agarwal, “Nonclassical two-photon interferometry and lithography with high-gain optical parametric amplifiers,” Phys. Rev. A 64, 043802 (2001).
[Crossref]

G. S. Agarwal, R. W. Boyd, E. M. Nagasako, and S. J. Bentley, “Comment on ‘Quantum interferometric optical lithography: Exploiting entanglement to beat the diffraction limit’,” Phys. Rev. Lett. 86, 1389 (2001).
[Crossref] [PubMed]

Bjork, G.

G. Bjork, L.L. Sanchez-Soto, and J. Soderholm, “Entangled-state lithography: Tailoring any pattern with a single state,” Phys. Rev.Lett. 86, 4516–4519 (2001).
[Crossref] [PubMed]

Boto, A. N.

P. Kok, A. N. Boto, D. S. Abrams, C. P. Williams, S. L. Braunstein, and J. P. Dowling, “Quantuminterferometric optical lithography: Towards arbitrary two-dimensional patterns,” Phys. Rev. A 63, 063407 (2001).
[Crossref]

Boto, N.

N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: Exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85, 2733–2736 (2000).
[Crossref] [PubMed]

Boyd, R. W.

E. M. Nagasako, S. J. Bentley, R. W. Boyd, and G. S. Agarwal, “Parametric downconversion vs. optical parametric amplification: A comparison of their quantum statistics,” J. Mod. Opt. 49, 529–537 (2002).
[Crossref]

E. M. Nagasako, S. J. Bentley, R. W. Boyd, and G. S. Agarwal, “Nonclassical two-photon interferometry and lithography with high-gain optical parametric amplifiers,” Phys. Rev. A 64, 043802 (2001).
[Crossref]

G. S. Agarwal, R. W. Boyd, E. M. Nagasako, and S. J. Bentley, “Comment on ‘Quantum interferometric optical lithography: Exploiting entanglement to beat the diffraction limit’,” Phys. Rev. Lett. 86, 1389 (2001).
[Crossref] [PubMed]

Braunstein, S. L.

P. Kok, A. N. Boto, D. S. Abrams, C. P. Williams, S. L. Braunstein, and J. P. Dowling, “Quantuminterferometric optical lithography: Towards arbitrary two-dimensional patterns,” Phys. Rev. A 63, 063407 (2001).
[Crossref]

N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: Exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85, 2733–2736 (2000).
[Crossref] [PubMed]

Brueck, S. R. J.

S. R. J. Brueck, S. H. Zaidi, X. Chen, and Z. Zhang, “Interferometric lithography —from periodic arrays to arbitrary patterns,” Microelectron. Eng. 42, 145–148 (1998).
[Crossref]

Cataliotti, F. S.

F. S. Cataliotti, R. Scheunemann, T. W. Hänsch, and M. Weitz, “Superresolution of pulsed multiphoton Raman transitions,” Phys. Rev. Lett. 87, 113601 (2001).
[Crossref] [PubMed]

Chekhova, M. V.

M. D’Angelo, M. V. Chekhova, and Y. Shih, “Two-photon diffraction and quantum lithography,” Phys. Rev. Lett. 87, 013602 (2001).
[Crossref]

Chen, X.

S. R. J. Brueck, S. H. Zaidi, X. Chen, and Z. Zhang, “Interferometric lithography —from periodic arrays to arbitrary patterns,” Microelectron. Eng. 42, 145–148 (1998).
[Crossref]

D’Angelo, M.

M. D’Angelo, M. V. Chekhova, and Y. Shih, “Two-photon diffraction and quantum lithography,” Phys. Rev. Lett. 87, 013602 (2001).
[Crossref]

Dowling, J. P.

P. Kok, A. N. Boto, D. S. Abrams, C. P. Williams, S. L. Braunstein, and J. P. Dowling, “Quantuminterferometric optical lithography: Towards arbitrary two-dimensional patterns,” Phys. Rev. A 63, 063407 (2001).
[Crossref]

N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: Exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85, 2733–2736 (2000).
[Crossref] [PubMed]

Edamatsu, K.

K. Edamatsu, R. Shimizu, and T. Itoh, “Measurement of the photonic de Broglie wavelength of entangled photon pairs generated by spontaneous parametric down-conversion,” Phys. Rev. Lett. 89, 213601 (2002).
[Crossref] [PubMed]

Fonseca, E. J. S.

E. J. S. Fonseca, C. H. Monken, and S. Pádua, “Measurement of the de Broglie wavelength of a multiphoton wave packet,” Phys. Rev. Lett. 82, 2868–2871 (1999).
[Crossref]

Gerry, C.C.

C.C. Gerry, “Enhanced generation of twin single-photon states via quantum interference in parametric down-conversion: Application to two-photon quantum photolithography,” Phys. Rev. A 67, 043801 (2003).
[Crossref]

Hänsch, T. W.

F. S. Cataliotti, R. Scheunemann, T. W. Hänsch, and M. Weitz, “Superresolution of pulsed multiphoton Raman transitions,” Phys. Rev. Lett. 87, 113601 (2001).
[Crossref] [PubMed]

Itoh, T.

K. Edamatsu, R. Shimizu, and T. Itoh, “Measurement of the photonic de Broglie wavelength of entangled photon pairs generated by spontaneous parametric down-conversion,” Phys. Rev. Lett. 89, 213601 (2002).
[Crossref] [PubMed]

Kok, P.

P. Kok, A. N. Boto, D. S. Abrams, C. P. Williams, S. L. Braunstein, and J. P. Dowling, “Quantuminterferometric optical lithography: Towards arbitrary two-dimensional patterns,” Phys. Rev. A 63, 063407 (2001).
[Crossref]

N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: Exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85, 2733–2736 (2000).
[Crossref] [PubMed]

Komatsu, M.

H. Ooki, M. Komatsu, and M. Shibuya, “A novel super-resolution technique for optical lithography—nonlinear multiple exposure method,” Jpn. J. Appl. Phys. 33, L177–L179 (1994).
[Crossref]

Korobkin, D.

D. Korobkin and E. Yablonovitch, “Twofold spatial resolution enhancement by two-photon exposure of photographic film,” Opt. Eng. 41, 1729–1732 (2002).
[Crossref]

Monken, C. H.

E. J. S. Fonseca, C. H. Monken, and S. Pádua, “Measurement of the de Broglie wavelength of a multiphoton wave packet,” Phys. Rev. Lett. 82, 2868–2871 (1999).
[Crossref]

Nagasako, E. M.

E. M. Nagasako, S. J. Bentley, R. W. Boyd, and G. S. Agarwal, “Parametric downconversion vs. optical parametric amplification: A comparison of their quantum statistics,” J. Mod. Opt. 49, 529–537 (2002).
[Crossref]

E. M. Nagasako, S. J. Bentley, R. W. Boyd, and G. S. Agarwal, “Nonclassical two-photon interferometry and lithography with high-gain optical parametric amplifiers,” Phys. Rev. A 64, 043802 (2001).
[Crossref]

G. S. Agarwal, R. W. Boyd, E. M. Nagasako, and S. J. Bentley, “Comment on ‘Quantum interferometric optical lithography: Exploiting entanglement to beat the diffraction limit’,” Phys. Rev. Lett. 86, 1389 (2001).
[Crossref] [PubMed]

Ooki, H.

H. Ooki, M. Komatsu, and M. Shibuya, “A novel super-resolution technique for optical lithography—nonlinear multiple exposure method,” Jpn. J. Appl. Phys. 33, L177–L179 (1994).
[Crossref]

Pádua, S.

E. J. S. Fonseca, C. H. Monken, and S. Pádua, “Measurement of the de Broglie wavelength of a multiphoton wave packet,” Phys. Rev. Lett. 82, 2868–2871 (1999).
[Crossref]

Rayleigh, Lord

Lord Rayleigh, “Investigations in optics with special reference to the spectroscope,” Phil. Mag. 8, 261–274 (1879).
[Crossref]

Sanchez-Soto, L.L.

G. Bjork, L.L. Sanchez-Soto, and J. Soderholm, “Entangled-state lithography: Tailoring any pattern with a single state,” Phys. Rev.Lett. 86, 4516–4519 (2001).
[Crossref] [PubMed]

Scheunemann, R.

F. S. Cataliotti, R. Scheunemann, T. W. Hänsch, and M. Weitz, “Superresolution of pulsed multiphoton Raman transitions,” Phys. Rev. Lett. 87, 113601 (2001).
[Crossref] [PubMed]

Shibuya, M.

H. Ooki, M. Komatsu, and M. Shibuya, “A novel super-resolution technique for optical lithography—nonlinear multiple exposure method,” Jpn. J. Appl. Phys. 33, L177–L179 (1994).
[Crossref]

Shih, Y.

M. D’Angelo, M. V. Chekhova, and Y. Shih, “Two-photon diffraction and quantum lithography,” Phys. Rev. Lett. 87, 013602 (2001).
[Crossref]

Shimizu, R.

K. Edamatsu, R. Shimizu, and T. Itoh, “Measurement of the photonic de Broglie wavelength of entangled photon pairs generated by spontaneous parametric down-conversion,” Phys. Rev. Lett. 89, 213601 (2002).
[Crossref] [PubMed]

Soderholm, J.

G. Bjork, L.L. Sanchez-Soto, and J. Soderholm, “Entangled-state lithography: Tailoring any pattern with a single state,” Phys. Rev.Lett. 86, 4516–4519 (2001).
[Crossref] [PubMed]

Vrijen, R. B.

E. Yablonovitch and R. B. Vrijen, “Optical projection lithography at half the Rayleigh resolution limit by two-photon exposure,” Opt. Eng. 38, 334–338 (1999).
[Crossref]

Weitz, M.

F. S. Cataliotti, R. Scheunemann, T. W. Hänsch, and M. Weitz, “Superresolution of pulsed multiphoton Raman transitions,” Phys. Rev. Lett. 87, 113601 (2001).
[Crossref] [PubMed]

Williams, C. P.

P. Kok, A. N. Boto, D. S. Abrams, C. P. Williams, S. L. Braunstein, and J. P. Dowling, “Quantuminterferometric optical lithography: Towards arbitrary two-dimensional patterns,” Phys. Rev. A 63, 063407 (2001).
[Crossref]

N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: Exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85, 2733–2736 (2000).
[Crossref] [PubMed]

Yablonovitch, E.

D. Korobkin and E. Yablonovitch, “Twofold spatial resolution enhancement by two-photon exposure of photographic film,” Opt. Eng. 41, 1729–1732 (2002).
[Crossref]

E. Yablonovitch and R. B. Vrijen, “Optical projection lithography at half the Rayleigh resolution limit by two-photon exposure,” Opt. Eng. 38, 334–338 (1999).
[Crossref]

Zaidi, S. H.

S. R. J. Brueck, S. H. Zaidi, X. Chen, and Z. Zhang, “Interferometric lithography —from periodic arrays to arbitrary patterns,” Microelectron. Eng. 42, 145–148 (1998).
[Crossref]

Zhang, Z.

S. R. J. Brueck, S. H. Zaidi, X. Chen, and Z. Zhang, “Interferometric lithography —from periodic arrays to arbitrary patterns,” Microelectron. Eng. 42, 145–148 (1998).
[Crossref]

J. Mod. Opt. (1)

E. M. Nagasako, S. J. Bentley, R. W. Boyd, and G. S. Agarwal, “Parametric downconversion vs. optical parametric amplification: A comparison of their quantum statistics,” J. Mod. Opt. 49, 529–537 (2002).
[Crossref]

Jpn. J. Appl. Phys. (1)

H. Ooki, M. Komatsu, and M. Shibuya, “A novel super-resolution technique for optical lithography—nonlinear multiple exposure method,” Jpn. J. Appl. Phys. 33, L177–L179 (1994).
[Crossref]

Microelectron. Eng. (1)

S. R. J. Brueck, S. H. Zaidi, X. Chen, and Z. Zhang, “Interferometric lithography —from periodic arrays to arbitrary patterns,” Microelectron. Eng. 42, 145–148 (1998).
[Crossref]

Opt. Eng. (2)

E. Yablonovitch and R. B. Vrijen, “Optical projection lithography at half the Rayleigh resolution limit by two-photon exposure,” Opt. Eng. 38, 334–338 (1999).
[Crossref]

D. Korobkin and E. Yablonovitch, “Twofold spatial resolution enhancement by two-photon exposure of photographic film,” Opt. Eng. 41, 1729–1732 (2002).
[Crossref]

Phil. Mag. (1)

Lord Rayleigh, “Investigations in optics with special reference to the spectroscope,” Phil. Mag. 8, 261–274 (1879).
[Crossref]

Phys. Rev. A (3)

E. M. Nagasako, S. J. Bentley, R. W. Boyd, and G. S. Agarwal, “Nonclassical two-photon interferometry and lithography with high-gain optical parametric amplifiers,” Phys. Rev. A 64, 043802 (2001).
[Crossref]

P. Kok, A. N. Boto, D. S. Abrams, C. P. Williams, S. L. Braunstein, and J. P. Dowling, “Quantuminterferometric optical lithography: Towards arbitrary two-dimensional patterns,” Phys. Rev. A 63, 063407 (2001).
[Crossref]

C.C. Gerry, “Enhanced generation of twin single-photon states via quantum interference in parametric down-conversion: Application to two-photon quantum photolithography,” Phys. Rev. A 67, 043801 (2003).
[Crossref]

Phys. Rev. Lett. (6)

M. D’Angelo, M. V. Chekhova, and Y. Shih, “Two-photon diffraction and quantum lithography,” Phys. Rev. Lett. 87, 013602 (2001).
[Crossref]

E. J. S. Fonseca, C. H. Monken, and S. Pádua, “Measurement of the de Broglie wavelength of a multiphoton wave packet,” Phys. Rev. Lett. 82, 2868–2871 (1999).
[Crossref]

K. Edamatsu, R. Shimizu, and T. Itoh, “Measurement of the photonic de Broglie wavelength of entangled photon pairs generated by spontaneous parametric down-conversion,” Phys. Rev. Lett. 89, 213601 (2002).
[Crossref] [PubMed]

N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: Exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85, 2733–2736 (2000).
[Crossref] [PubMed]

G. S. Agarwal, R. W. Boyd, E. M. Nagasako, and S. J. Bentley, “Comment on ‘Quantum interferometric optical lithography: Exploiting entanglement to beat the diffraction limit’,” Phys. Rev. Lett. 86, 1389 (2001).
[Crossref] [PubMed]

F. S. Cataliotti, R. Scheunemann, T. W. Hänsch, and M. Weitz, “Superresolution of pulsed multiphoton Raman transitions,” Phys. Rev. Lett. 87, 113601 (2001).
[Crossref] [PubMed]

Phys. Rev.Lett. (1)

G. Bjork, L.L. Sanchez-Soto, and J. Soderholm, “Entangled-state lithography: Tailoring any pattern with a single state,” Phys. Rev.Lett. 86, 4516–4519 (2001).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Schematic of the method.

Fig. 2.
Fig. 2.

Experimental set-up.

Fig. 3.
Fig. 3.

Measured intensity distributions for (a) M=N=1, (b) M=1, N=2, (c) M=1, N=3, (d) M=N=2, (e) M=2, N=3, and (f) M=N=3. Note that the first three patterns have the same period (because M=1) but that the fringes become sharper with increasing N. Note also the doubling of the fundamental frequency in (d) and (e) and the tripling of the frequency in (f).

Tables (1)

Tables Icon

Table 1. Visibility as a function of resolution and absorption process.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Δ ϕ k = 2 π k M .
I ( N , M ) = K = 1 M ( E k E k * ) N
E k = e i π x χ + e i π x χ e i Δ ϕ k .
V = A M , N + A M H o A 0 , N + A M H e ,
A k , N = ( 2 N ) ! [ ( N k ) ! ( N + k ) ! ] ( k 0 )
A 0 , N = ( 2 N ) ! [ 2 ( N ! ) 2 ]

Metrics