Abstract

Short lengths of highly nonlinear bismuth-oxide fiber are used to generate smooth supercontinuum spanning from 1200 nm to 1800 nm, with sub-0.5 nJ pulse energies. The spectral broadening in a 2-cm length of this fiber was used to compress 150-fs pulses to 25 fs.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M. F. Yan, C. G. Jorgenson, �??Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared,�?? Opt. Lett. 29, 250-252 (2004).
    [CrossRef] [PubMed]
  2. W. Drexler, U. Morgner, F. X. Kaertner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, �??In vivo ultrahigh-resolution optical coherence tomography,�?? Opt. Lett. 24, 1221-1223 (1999).
    [CrossRef]
  3. J. Shah, �??Ultrafast spectroscopy of semiconductors and semiconductor nanostructures,�?? Springer Series in Solid-State Sciences 115, (Springer, New York, New York, 1999).
  4. P. T. Rakich, J. T. Gopinath, H. Sotobayashi, C. W. Wong, S. G. Johnson, J. D. Joannopoulos, and E. P. Ippen, �??Broadband supercontinuum-based measurements of high-index contrast photonic bandgap devices from 1 to 2 µm,�?? To be presented at LEOS (Lasers and Electro-Optic Society) Annual Meeting, Oct. 2004 (Puerto Rico).
  5. R. T. Neal, M. D. C. Charlton, G. J. Parker, C. E. Finlayson, M. C. Netti, and J. J. Baumberg, �??Ultrabroadband transmission measurements on waveguides of silicon-rich silicon dioxide,�?? Appl. Phys. Lett. 83, 4598-4600 (2003).
    [CrossRef]
  6. R. Ell, U. Morgner, F. X. Kaertner, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, T .Tschudi, M. J. Lederer, A. Boiko, B Luther-Davies, �??Generation of 5-fs pulses and octave-spanning spectra directly from a Ti:sapphire laser,�?? Opt. Lett. 26, 373-375 (2001).
    [CrossRef]
  7. D. H. Sutter, G. Steinmeyer, L. Gallmann, N. Matuschek, F. Morier-Genoud, U. Keller, V. Scheuer, G. Angelow and T. Tschudi, �??Semiconductor saturable-absorber mirror-assisted kerr-lens modelocked Ti:sapphire laser producing pulses in the two-cycle regime,�?? Opt. Lett. 24, 631-633 (1999).
    [CrossRef]
  8. J. W. Nicholson, M. F. Yan, P. Wisk, J. Fleming, F. DiMarcello, E. Monberg, A. Yablon, C. Jørgensen, and T. Veng, �??All-fiber, octave-spanning supercontinuum,�?? Opt. Lett. 28, 643-645 (2003).
    [CrossRef] [PubMed]
  9. D. J. Ripin, C. Chudoba, J. T. Gopinath, J. G. Fujimoto, E. P. Ippen, U. Morgner, F. X. Kaertner, V. Scheuer, G. Angelow, and T. Tschudi, �??Generation of 20-fs pulses by a prismless Cr4+:YAG laser,�?? Opt. Lett. 27. 61-63 (2002).
    [CrossRef]
  10. M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, G. Valiulis, and A. Varanavicius, �??Parametric generation of high-energy 14.5-fs light pulses at 1.5 µm,�?? Opt. Lett. 23, 630-632 (1998).
    [CrossRef]
  11. Y. Matsui, M. D. Pelusi, and A. Suzuki, �??Generation of 20-fs optical pulses from a gain-switched laser diode by a four-stage soliton compression technique,�?? IEEE Phot. Tech. Lett. 11, 1217-1219 (1999).
    [CrossRef]
  12. K.L. Corwin, N.R. Newbury, J.M. Dudley, S. Coen, S.A. Diddams, B.R. Washburn, K. Weber and R.S. Windeler, �??Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber,�?? Appl. Phys. B 77, 269-277 (2003).
    [CrossRef]
  13. S. Taccheo and L. Boivin, �??Investigation and design rules of supercontinuum sources for WDM applications,�?? Optical Fiber Communication Conference 2000, ThA1.
  14. K. Kikuchi, K. Taira, and N. Sugimoto, �??Highly nonlinear bismuth oxide-based glass fibres for all-optical signal processing,�?? Electron. Lett. 38, 156-157 (2002).
    [CrossRef]
  15. N. Sugimoto, T. Nagashima, T. Hasegawa, S. Ohara, K. Taira, and K. Kikuchi, �??Bismuth-based optical fiber with nonlinear coefficient of 1360 W-1km-1,�?? Optical Fiber Communication Conference Postdeadline 2004, PDP26.
  16. G. P. Agrawal, Nonlinear fiber optics, (Academic Press: New York, 1995).
  17. W. Nicholson, J. Jasapara, W. Rudolph, F. G. Omenetto and A. J. Taylor, �??Full-field characterization of femtosecond pulses by spectrum and cross-correlation measurements,�?? Opt. Lett. 24, 1774-1776 (1999).
    [CrossRef]

Appl. Phys. B

K.L. Corwin, N.R. Newbury, J.M. Dudley, S. Coen, S.A. Diddams, B.R. Washburn, K. Weber and R.S. Windeler, �??Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber,�?? Appl. Phys. B 77, 269-277 (2003).
[CrossRef]

Appl. Phys. Lett.

R. T. Neal, M. D. C. Charlton, G. J. Parker, C. E. Finlayson, M. C. Netti, and J. J. Baumberg, �??Ultrabroadband transmission measurements on waveguides of silicon-rich silicon dioxide,�?? Appl. Phys. Lett. 83, 4598-4600 (2003).
[CrossRef]

Electron. Lett.

K. Kikuchi, K. Taira, and N. Sugimoto, �??Highly nonlinear bismuth oxide-based glass fibres for all-optical signal processing,�?? Electron. Lett. 38, 156-157 (2002).
[CrossRef]

IEEE Phot. Tech. Lett.

Y. Matsui, M. D. Pelusi, and A. Suzuki, �??Generation of 20-fs optical pulses from a gain-switched laser diode by a four-stage soliton compression technique,�?? IEEE Phot. Tech. Lett. 11, 1217-1219 (1999).
[CrossRef]

LEOS Annual Meeting

P. T. Rakich, J. T. Gopinath, H. Sotobayashi, C. W. Wong, S. G. Johnson, J. D. Joannopoulos, and E. P. Ippen, �??Broadband supercontinuum-based measurements of high-index contrast photonic bandgap devices from 1 to 2 µm,�?? To be presented at LEOS (Lasers and Electro-Optic Society) Annual Meeting, Oct. 2004 (Puerto Rico).

Opt. Lett.

M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, G. Valiulis, and A. Varanavicius, �??Parametric generation of high-energy 14.5-fs light pulses at 1.5 µm,�?? Opt. Lett. 23, 630-632 (1998).
[CrossRef]

D. H. Sutter, G. Steinmeyer, L. Gallmann, N. Matuschek, F. Morier-Genoud, U. Keller, V. Scheuer, G. Angelow and T. Tschudi, �??Semiconductor saturable-absorber mirror-assisted kerr-lens modelocked Ti:sapphire laser producing pulses in the two-cycle regime,�?? Opt. Lett. 24, 631-633 (1999).
[CrossRef]

W. Drexler, U. Morgner, F. X. Kaertner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, �??In vivo ultrahigh-resolution optical coherence tomography,�?? Opt. Lett. 24, 1221-1223 (1999).
[CrossRef]

W. Nicholson, J. Jasapara, W. Rudolph, F. G. Omenetto and A. J. Taylor, �??Full-field characterization of femtosecond pulses by spectrum and cross-correlation measurements,�?? Opt. Lett. 24, 1774-1776 (1999).
[CrossRef]

R. Ell, U. Morgner, F. X. Kaertner, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, T .Tschudi, M. J. Lederer, A. Boiko, B Luther-Davies, �??Generation of 5-fs pulses and octave-spanning spectra directly from a Ti:sapphire laser,�?? Opt. Lett. 26, 373-375 (2001).
[CrossRef]

D. J. Ripin, C. Chudoba, J. T. Gopinath, J. G. Fujimoto, E. P. Ippen, U. Morgner, F. X. Kaertner, V. Scheuer, G. Angelow, and T. Tschudi, �??Generation of 20-fs pulses by a prismless Cr4+:YAG laser,�?? Opt. Lett. 27. 61-63 (2002).
[CrossRef]

J. W. Nicholson, M. F. Yan, P. Wisk, J. Fleming, F. DiMarcello, E. Monberg, A. Yablon, C. Jørgensen, and T. Veng, �??All-fiber, octave-spanning supercontinuum,�?? Opt. Lett. 28, 643-645 (2003).
[CrossRef] [PubMed]

B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M. F. Yan, C. G. Jorgenson, �??Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared,�?? Opt. Lett. 29, 250-252 (2004).
[CrossRef] [PubMed]

Optical Fiber Communication Conference

N. Sugimoto, T. Nagashima, T. Hasegawa, S. Ohara, K. Taira, and K. Kikuchi, �??Bismuth-based optical fiber with nonlinear coefficient of 1360 W-1km-1,�?? Optical Fiber Communication Conference Postdeadline 2004, PDP26.

S. Taccheo and L. Boivin, �??Investigation and design rules of supercontinuum sources for WDM applications,�?? Optical Fiber Communication Conference 2000, ThA1.

Springer Series in Solid-State Sciences

J. Shah, �??Ultrafast spectroscopy of semiconductors and semiconductor nanostructures,�?? Springer Series in Solid-State Sciences 115, (Springer, New York, New York, 1999).

Other

G. P. Agrawal, Nonlinear fiber optics, (Academic Press: New York, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Spectra from a 2-cm piece of fiber generated by 1540-nm excitation at average powers exiting the fiber of: a) 32 mW b) 21.4 mW c) 14 mW d) 7 mW. The interference at the center of the spectra is due to insufficient attenuation of cladding modes.

Fig. 2.
Fig. 2.

Spectra from a 2-cm length of fiber of input wavelengths of: a) 1540 nm b) 1500 nm c) 1450 nm. The spectra were taken up to 1700 nm with an optical spectrum analyzer, and the measurement from 1700–1900 nm was taken with a spectrometer. The spectra were all taken for comparable powers and are vertically offset for ease of viewing.

Fig. 3.
Fig. 3.

Fringe resolved autocorrelation of 25-fs pulses generated from 2 cm of fiber with 150-fs input pulses at 1540 nm. The pulse is fitted with the Picaso phase retrieval algorithm.

Fig. 4.
Fig. 4.

Supercontinuum spectra from 1 m of highly nonlinear bismuth oxide fiber generated by 1540-nm excitation at average powers exiting the fiber of: a) 34 mW b) 20 mW c) 10 mW.

Metrics