Abstract

We propose a purely phase-sampled Bragg grating for dispersion and dispersion slope compensation by introducing a chirp in the grating period and coupling coefficient. The bandwidth of all reflected channels can be equalized by chirping the sampling period at the same time. We show that a trade-off exists between the linearity of dispersion slope and the equalization of reflection channel bandwidths and discuss how the values of the coupling coefficients can be optimized in practice to improve the device performance.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. R. Kashyap, Fiber Bragg Gratings (Academic Press, San Diego, CA, 1999).
  2. V. Jayaraman, Z. M. Chuang, and L. A. Colderen, �??Theory, design, and performance of extended tuning range semiconductor lasers with Sampled Gratings,�?? IEEE J. Quantum Electron. 29, 1824-1834 (1993).
    [CrossRef]
  3. B. J. Eggleton, P.A. Krug, L. Poladian and F. Ouellette, �??Long superstructure Bragg gratings in optical fibres,�?? Electron. Lett. 30, 1621-1623 (1994).
    [CrossRef]
  4. F. Ouellette, P. A. Krug, T. Stephens, G. Dhosi and B. Eggleton, �??Broadband and WDM dispersion compensation using chirped sampled fiber Bragg gratings,�?? Electron. Lett. 31, 899-901 (1995).
    [CrossRef]
  5. H. Ishii, Y. Tohmori, T. Tamamura, and Y. Yoshikuni, �??Super-structure grating (SSG) for broadly tunable DBR lasers,�?? IEEE Photon. Technol. Lett. 4, 393-395 (1993).
    [CrossRef]
  6. H. Ishii, F. Kano, Y. Tohmori, Y. Kondo, T. Tamamura, and Y. Yoshikuni, �??Narrow spectral linewidth under wavelength tuning in thermally tunable super-structure-grating (SSG) DBR lasers,�?? IEEE J. Sel. Top. in Quantum Electron. 1, 401-407 (1995).
    [CrossRef]
  7. Y. Painchaud, A. Mailloux, H. Chotard, E. Pelletier, and M. Guy, �??Multi-channel fiber Bragg gratings for dispersion and slope compensation,�?? in Proc. Optical Fiber Communication Conference (Optical Society of America, Washington, DC, 2002) paper ThAA5.
  8. A.V. Buryak and D.Y. Stepanov, �??Novel multi-channel grating devices,�?? in Proc. of Bragg Gratings Photosensitivity, and Polling in Glass waveguides vol. 60 of TOPS series (Optical Society of America, Washington, DC, 2001), paper BThB3.
  9. A. V. Buryak, K. Y. Kolossovski, and D. Y. Stepanov, �??Optimization of refractive index sampling for multichannel fiber Bragg gratings,�?? IEEE Quantum Electron. 39, 91-98 (2003).
    [CrossRef]
  10. J. E. Rothenberg, H. Li, Y. Li, J. Popelek, Y. Sheng, Y. Wang, R. B. Wilcox, and J. Zweiback, �??Dammann fiber Bragg gratings and phase-only sampling for high channel counts,�?? IEEE Photon. Technol. Lett. 14, 1309-1311 (2002).
    [CrossRef]
  11. H. Lee and G. P. Agrawal, �??Purely phase-sampled fiber Bragg gratings for broad-band dispersion and dispersion slope dispersion,�?? IEEE Photon. Technol. Lett. 15, 1091-1093 (2003).
    [CrossRef]
  12. H. Lee and G. P. Agrawal, �??Add-drop multiplexers and interleavers with broad-band chromatic dispersion compensation based on purely phase-sampled fiber gratings,�?? IEEE Photon. Technol. Lett. 16, 635-637 (2004).
    [CrossRef]
  13. M. Morin, M. Poulin, A. Mailloux, F. Trepanier and Y. Painchaud, �??Full C-band slope-mached dispersion compensation based on a phase sampled Bragg grating,�?? in Proc. Optical Fiber Communication Conference (Optical Society of America, Washington, DC, 2004) paper WK1.

Electron. Lett. (2)

B. J. Eggleton, P.A. Krug, L. Poladian and F. Ouellette, �??Long superstructure Bragg gratings in optical fibres,�?? Electron. Lett. 30, 1621-1623 (1994).
[CrossRef]

F. Ouellette, P. A. Krug, T. Stephens, G. Dhosi and B. Eggleton, �??Broadband and WDM dispersion compensation using chirped sampled fiber Bragg gratings,�?? Electron. Lett. 31, 899-901 (1995).
[CrossRef]

IEEE J. Quantum Electron. (1)

V. Jayaraman, Z. M. Chuang, and L. A. Colderen, �??Theory, design, and performance of extended tuning range semiconductor lasers with Sampled Gratings,�?? IEEE J. Quantum Electron. 29, 1824-1834 (1993).
[CrossRef]

IEEE J. Sel. Top. in Quantum Electron. (1)

H. Ishii, F. Kano, Y. Tohmori, Y. Kondo, T. Tamamura, and Y. Yoshikuni, �??Narrow spectral linewidth under wavelength tuning in thermally tunable super-structure-grating (SSG) DBR lasers,�?? IEEE J. Sel. Top. in Quantum Electron. 1, 401-407 (1995).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

H. Ishii, Y. Tohmori, T. Tamamura, and Y. Yoshikuni, �??Super-structure grating (SSG) for broadly tunable DBR lasers,�?? IEEE Photon. Technol. Lett. 4, 393-395 (1993).
[CrossRef]

J. E. Rothenberg, H. Li, Y. Li, J. Popelek, Y. Sheng, Y. Wang, R. B. Wilcox, and J. Zweiback, �??Dammann fiber Bragg gratings and phase-only sampling for high channel counts,�?? IEEE Photon. Technol. Lett. 14, 1309-1311 (2002).
[CrossRef]

H. Lee and G. P. Agrawal, �??Purely phase-sampled fiber Bragg gratings for broad-band dispersion and dispersion slope dispersion,�?? IEEE Photon. Technol. Lett. 15, 1091-1093 (2003).
[CrossRef]

H. Lee and G. P. Agrawal, �??Add-drop multiplexers and interleavers with broad-band chromatic dispersion compensation based on purely phase-sampled fiber gratings,�?? IEEE Photon. Technol. Lett. 16, 635-637 (2004).
[CrossRef]

IEEE Quantum Electron. (1)

A. V. Buryak, K. Y. Kolossovski, and D. Y. Stepanov, �??Optimization of refractive index sampling for multichannel fiber Bragg gratings,�?? IEEE Quantum Electron. 39, 91-98 (2003).
[CrossRef]

OFC 2002 (1)

Y. Painchaud, A. Mailloux, H. Chotard, E. Pelletier, and M. Guy, �??Multi-channel fiber Bragg gratings for dispersion and slope compensation,�?? in Proc. Optical Fiber Communication Conference (Optical Society of America, Washington, DC, 2002) paper ThAA5.

OFC 2004 (1)

M. Morin, M. Poulin, A. Mailloux, F. Trepanier and Y. Painchaud, �??Full C-band slope-mached dispersion compensation based on a phase sampled Bragg grating,�?? in Proc. Optical Fiber Communication Conference (Optical Society of America, Washington, DC, 2004) paper WK1.

OSA TOPS Series 2001 (1)

A.V. Buryak and D.Y. Stepanov, �??Novel multi-channel grating devices,�?? in Proc. of Bragg Gratings Photosensitivity, and Polling in Glass waveguides vol. 60 of TOPS series (Optical Society of America, Washington, DC, 2001), paper BThB3.

Other (1)

R. Kashyap, Fiber Bragg Gratings (Academic Press, San Diego, CA, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Optimized phase profile (top) and the resulting of coupling coefficients (bottom) as a function of channel wavelengths for a 10-cm-long phase-sampled grating. Circles show the optimum phase values and stars denote the location of wavelength channels.

Fig. 2.
Fig. 2.

Transmissivity (dotted line) and reflectivity (solid line) spectra (top) of the 10-cm-long grating. Delay time (middle) and dispersion values (bottom) obtained with the phase profile of Fig. 1 are also shown as a function of channel wavelength.

Fig. 3.
Fig. 3.

(a) Dispersion parameter and (b) channel bandwidth as a function of channel wavelength for several values of modulation amplitude Δn1 . In all cases the coupling coefficients are chirped linearly.

Fig. 4.
Fig. 4.

(a) Dispersion parameter and (b) bandwidth of individual WDM channels when only the sampling period is chirped (blue triangles), only coupling coefficient is chirped (green squares), and both of them are chirped (red circles).

Fig. 5.
Fig. 5.

(a) Dispersion D and (b) bandwidth of individual WDM channels for several modulation amplitudes when the coupling coefficient and the sampling period are chirped simultaneously.

Fig. 6.
Fig. 6.

Transmissivity (dotted line) and reflectivity (solid line) spectra (top) of a 10-cm-long grating designed for 16 WDM channels. Delay time (middle) and dispersion values (bottom) are also shown as a function of channel wavelength.

Fig. 7.
Fig. 7.

Channel bandwidth for16 WDM wavelengths when either the sampling period triangles), or the coupling coefficient (squares), or both of them (circles) are chirped.

Fig. 8.
Fig. 8.

The dispersion (a) and a channel bandwidth of individual WDM wavelength (b) at several modulation amplitude constants when the chirps in the coupling coefficient and the sampling period are generated at the same time, respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n ( z ) = n 0 + Δ n 1 Re { exp [ i ( 2 β 0 z + ϕ ( z ) ) ] }
= n 0 + Δ n 1 Re { m F m exp [ 2 i ( β 0 + m β s ) z ] }

Metrics