Abstract

Based on analyzing and synthesizing the effects of In doping, Fe doping and oxidation state, we propose an efficient way to improve photorefractive properties of LiNbO3 crystal. According to the proposed way, a sample of In:Fe:LiNbO3 crystal is grown and achieves larger dynamic range, higher sensitivity and better signal-to-noise ratio than Fe:LiNbO3 crystal (Fe:0.03wt.%) that is generally considered as a preferable storage medium for high-density holographic data storage. In a coherent volume 0.074cm3 of this crystal, 2030 holograms have been successfully multiplexed and exactly identified in a compact volume holographic data storage and correlation recognition system.

© 2004 Optical Society of America

Full Article  |  PDF Article
Related Articles
Quasi-stabilized ionic gratings in photorefractive media for multiplex holography

Matthew C. Bashaw and John F. Heanue
J. Opt. Soc. Am. B 14(8) 2024-2042 (1997)

Thermal fixing of 10,000 holograms in LiNbO3:Fe

Xin An, Demetri Psaltis, and Geoffrey W. Burr
Appl. Opt. 38(2) 386-393 (1999)

Effect of the oxidation state of LiNbO3:Fe on the diffraction efficiency of multiple holograms

Geoffrey W. Burr and Demetri Psaltis
Opt. Lett. 21(12) 893-895 (1996)

References

  • View by:
  • |
  • |
  • |

  1. H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic Data Storage (Springer, New York, 2000).
    [Crossref]
  2. Y. Yang, I. Nee, D. Psaltis, M. Luennemann, D. Berben, U. Hartwig, and K. Buse, “Photorefractive properties of lithium niobate crystals doped with manganese,” J. Opt. Soc. Am. B. 20,1491–1502 (2003).
    [Crossref]
  3. S. Tao, M. Lee, K. Kitamura, H. Hatano, L. Galambos, and L. Hesselink, “Holographic properties of doped stoichiometric LiNbO3 crystals,” in Fifth International Symposium on Optical Storage, F. Gan and L. Hou, eds., Proc. SPIE, 4085, 46–50 (2001).
  4. G. W. Burr, C. M. Jefferson, H. Coufal, M. Jurich, J. A. Honagle, R. M. Macfarlane, and R. M. Shelby, “Volume holographic data storage at areal density of 250 gigapixels/in2,” Opt. Lett. 26, 444–446 (2001).
    [Crossref]
  5. T. Volk, N. Rubinina, and M. Wöhlecke, “Optical-damage-resistant impurities in lithium niobate,” J. Opt. Soc. Am. B. 11, 1681–1687 (1994).
    [Crossref]
  6. N.Y. Kamber, J. Xu, S.M. Mikha, G. Zhang, S. Liu, and G. Zhang, “Threshold effect of incident light intensity for the resistance against the photorefractive light-induced scattering in doped lithium niobate crystals”, Opt.Commun. 176,91–96 (2000).
    [Crossref]
  7. H. Qiao, J. Xu, Q. Wu, X. Yu, Q. Sun, X. Zhang, G. Zhang, and T. Volk, “An increase of photorefractive sensitivity in In: LiNbO3 crystal,” Opt. Mater. 23, 269–272 (2003).
    [Crossref]
  8. G. Zhang, Y. Tomita, X. Zhang, and J. Xu, “Near-infrared holographic recording with quasi-nonvolatile readout in LiNbO3: In,Fe,” Appl. Phys. Lett. 81, 1393–1395 (2002).
    [Crossref]
  9. K. Peithmann, A. Wiebrock, and K. Buse, “Photorefractive properties of highly doped lithium niobate crystals in the visible and near-infrared,” Appl. Phys. B. 68, 777–784 (1999).
    [Crossref]
  10. Q. He, G. Liu, X. Li, J. Wang, M. Wu, and G. Jin, “Suppression of the influence of a photovoltaic dc field on volume holograms in Fe:LiNbO3,” Appl. Opt. 41, 4104–4107 (2002)
    [Crossref] [PubMed]
  11. Y. Yang, I. Nee, K. Buse, and D. Psaltis, “Ionic and electronic dark decay of holograms in LiNbO3:Fe crystals,” Appl. Phys. Lett. 78, 4076–4078 (2001).
    [Crossref]
  12. G. W. Burr and D. Psaltis, “Effect of the oxidation state of LiNbO3:Fe on the diffraction efficiency of multiple holograms,” Opt. Lett. 21, 893–895 (1996)
    [Crossref] [PubMed]
  13. C. Ouyang, L. Cao, Q. He, Y. Liao, M. Wu, and G. Jin, “Sidelobe suppression in volume holographic optical correlators by use of speckle modulation,” Opt. Lett. 28, 1972–1974 (2003).
    [Crossref] [PubMed]
  14. Y. Liao, Y. Guo, L. Cao, X. Ma, Q. He, and G. Jin, “Experiment on parallel correlated recognition of 2030 human faces based on speckle modulation,” Opt.Express 12, 047–4052 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-17-4047.
    [Crossref]
  15. D. Psaltis, D. Brady, and K. Wagner, “Adaptive optical networks using photorefractive crystals,” Appl. Opt. 27, 1752–1759 (1988).
    [Crossref]

2004 (1)

Y. Liao, Y. Guo, L. Cao, X. Ma, Q. He, and G. Jin, “Experiment on parallel correlated recognition of 2030 human faces based on speckle modulation,” Opt.Express 12, 047–4052 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-17-4047.
[Crossref]

2003 (3)

Y. Yang, I. Nee, D. Psaltis, M. Luennemann, D. Berben, U. Hartwig, and K. Buse, “Photorefractive properties of lithium niobate crystals doped with manganese,” J. Opt. Soc. Am. B. 20,1491–1502 (2003).
[Crossref]

H. Qiao, J. Xu, Q. Wu, X. Yu, Q. Sun, X. Zhang, G. Zhang, and T. Volk, “An increase of photorefractive sensitivity in In: LiNbO3 crystal,” Opt. Mater. 23, 269–272 (2003).
[Crossref]

C. Ouyang, L. Cao, Q. He, Y. Liao, M. Wu, and G. Jin, “Sidelobe suppression in volume holographic optical correlators by use of speckle modulation,” Opt. Lett. 28, 1972–1974 (2003).
[Crossref] [PubMed]

2002 (2)

Q. He, G. Liu, X. Li, J. Wang, M. Wu, and G. Jin, “Suppression of the influence of a photovoltaic dc field on volume holograms in Fe:LiNbO3,” Appl. Opt. 41, 4104–4107 (2002)
[Crossref] [PubMed]

G. Zhang, Y. Tomita, X. Zhang, and J. Xu, “Near-infrared holographic recording with quasi-nonvolatile readout in LiNbO3: In,Fe,” Appl. Phys. Lett. 81, 1393–1395 (2002).
[Crossref]

2001 (2)

G. W. Burr, C. M. Jefferson, H. Coufal, M. Jurich, J. A. Honagle, R. M. Macfarlane, and R. M. Shelby, “Volume holographic data storage at areal density of 250 gigapixels/in2,” Opt. Lett. 26, 444–446 (2001).
[Crossref]

Y. Yang, I. Nee, K. Buse, and D. Psaltis, “Ionic and electronic dark decay of holograms in LiNbO3:Fe crystals,” Appl. Phys. Lett. 78, 4076–4078 (2001).
[Crossref]

2000 (1)

N.Y. Kamber, J. Xu, S.M. Mikha, G. Zhang, S. Liu, and G. Zhang, “Threshold effect of incident light intensity for the resistance against the photorefractive light-induced scattering in doped lithium niobate crystals”, Opt.Commun. 176,91–96 (2000).
[Crossref]

1999 (1)

K. Peithmann, A. Wiebrock, and K. Buse, “Photorefractive properties of highly doped lithium niobate crystals in the visible and near-infrared,” Appl. Phys. B. 68, 777–784 (1999).
[Crossref]

1996 (1)

1994 (1)

T. Volk, N. Rubinina, and M. Wöhlecke, “Optical-damage-resistant impurities in lithium niobate,” J. Opt. Soc. Am. B. 11, 1681–1687 (1994).
[Crossref]

1988 (1)

Berben, D.

Y. Yang, I. Nee, D. Psaltis, M. Luennemann, D. Berben, U. Hartwig, and K. Buse, “Photorefractive properties of lithium niobate crystals doped with manganese,” J. Opt. Soc. Am. B. 20,1491–1502 (2003).
[Crossref]

Brady, D.

Burr, G. W.

Buse, K.

Y. Yang, I. Nee, D. Psaltis, M. Luennemann, D. Berben, U. Hartwig, and K. Buse, “Photorefractive properties of lithium niobate crystals doped with manganese,” J. Opt. Soc. Am. B. 20,1491–1502 (2003).
[Crossref]

Y. Yang, I. Nee, K. Buse, and D. Psaltis, “Ionic and electronic dark decay of holograms in LiNbO3:Fe crystals,” Appl. Phys. Lett. 78, 4076–4078 (2001).
[Crossref]

K. Peithmann, A. Wiebrock, and K. Buse, “Photorefractive properties of highly doped lithium niobate crystals in the visible and near-infrared,” Appl. Phys. B. 68, 777–784 (1999).
[Crossref]

Cao, L.

Y. Liao, Y. Guo, L. Cao, X. Ma, Q. He, and G. Jin, “Experiment on parallel correlated recognition of 2030 human faces based on speckle modulation,” Opt.Express 12, 047–4052 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-17-4047.
[Crossref]

C. Ouyang, L. Cao, Q. He, Y. Liao, M. Wu, and G. Jin, “Sidelobe suppression in volume holographic optical correlators by use of speckle modulation,” Opt. Lett. 28, 1972–1974 (2003).
[Crossref] [PubMed]

Coufal, H.

Coufal, H. J.

H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic Data Storage (Springer, New York, 2000).
[Crossref]

Galambos, L.

S. Tao, M. Lee, K. Kitamura, H. Hatano, L. Galambos, and L. Hesselink, “Holographic properties of doped stoichiometric LiNbO3 crystals,” in Fifth International Symposium on Optical Storage, F. Gan and L. Hou, eds., Proc. SPIE, 4085, 46–50 (2001).

Guo, Y.

Y. Liao, Y. Guo, L. Cao, X. Ma, Q. He, and G. Jin, “Experiment on parallel correlated recognition of 2030 human faces based on speckle modulation,” Opt.Express 12, 047–4052 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-17-4047.
[Crossref]

Hartwig, U.

Y. Yang, I. Nee, D. Psaltis, M. Luennemann, D. Berben, U. Hartwig, and K. Buse, “Photorefractive properties of lithium niobate crystals doped with manganese,” J. Opt. Soc. Am. B. 20,1491–1502 (2003).
[Crossref]

Hatano, H.

S. Tao, M. Lee, K. Kitamura, H. Hatano, L. Galambos, and L. Hesselink, “Holographic properties of doped stoichiometric LiNbO3 crystals,” in Fifth International Symposium on Optical Storage, F. Gan and L. Hou, eds., Proc. SPIE, 4085, 46–50 (2001).

He, Q.

Hesselink, L.

S. Tao, M. Lee, K. Kitamura, H. Hatano, L. Galambos, and L. Hesselink, “Holographic properties of doped stoichiometric LiNbO3 crystals,” in Fifth International Symposium on Optical Storage, F. Gan and L. Hou, eds., Proc. SPIE, 4085, 46–50 (2001).

Honagle, J. A.

Jefferson, C. M.

Jin, G.

Jurich, M.

Kamber, N.Y.

N.Y. Kamber, J. Xu, S.M. Mikha, G. Zhang, S. Liu, and G. Zhang, “Threshold effect of incident light intensity for the resistance against the photorefractive light-induced scattering in doped lithium niobate crystals”, Opt.Commun. 176,91–96 (2000).
[Crossref]

Kitamura, K.

S. Tao, M. Lee, K. Kitamura, H. Hatano, L. Galambos, and L. Hesselink, “Holographic properties of doped stoichiometric LiNbO3 crystals,” in Fifth International Symposium on Optical Storage, F. Gan and L. Hou, eds., Proc. SPIE, 4085, 46–50 (2001).

Lee, M.

S. Tao, M. Lee, K. Kitamura, H. Hatano, L. Galambos, and L. Hesselink, “Holographic properties of doped stoichiometric LiNbO3 crystals,” in Fifth International Symposium on Optical Storage, F. Gan and L. Hou, eds., Proc. SPIE, 4085, 46–50 (2001).

Li, X.

Liao, Y.

Y. Liao, Y. Guo, L. Cao, X. Ma, Q. He, and G. Jin, “Experiment on parallel correlated recognition of 2030 human faces based on speckle modulation,” Opt.Express 12, 047–4052 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-17-4047.
[Crossref]

C. Ouyang, L. Cao, Q. He, Y. Liao, M. Wu, and G. Jin, “Sidelobe suppression in volume holographic optical correlators by use of speckle modulation,” Opt. Lett. 28, 1972–1974 (2003).
[Crossref] [PubMed]

Liu, G.

Liu, S.

N.Y. Kamber, J. Xu, S.M. Mikha, G. Zhang, S. Liu, and G. Zhang, “Threshold effect of incident light intensity for the resistance against the photorefractive light-induced scattering in doped lithium niobate crystals”, Opt.Commun. 176,91–96 (2000).
[Crossref]

Luennemann, M.

Y. Yang, I. Nee, D. Psaltis, M. Luennemann, D. Berben, U. Hartwig, and K. Buse, “Photorefractive properties of lithium niobate crystals doped with manganese,” J. Opt. Soc. Am. B. 20,1491–1502 (2003).
[Crossref]

Ma, X.

Y. Liao, Y. Guo, L. Cao, X. Ma, Q. He, and G. Jin, “Experiment on parallel correlated recognition of 2030 human faces based on speckle modulation,” Opt.Express 12, 047–4052 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-17-4047.
[Crossref]

Macfarlane, R. M.

Mikha, S.M.

N.Y. Kamber, J. Xu, S.M. Mikha, G. Zhang, S. Liu, and G. Zhang, “Threshold effect of incident light intensity for the resistance against the photorefractive light-induced scattering in doped lithium niobate crystals”, Opt.Commun. 176,91–96 (2000).
[Crossref]

Nee, I.

Y. Yang, I. Nee, D. Psaltis, M. Luennemann, D. Berben, U. Hartwig, and K. Buse, “Photorefractive properties of lithium niobate crystals doped with manganese,” J. Opt. Soc. Am. B. 20,1491–1502 (2003).
[Crossref]

Y. Yang, I. Nee, K. Buse, and D. Psaltis, “Ionic and electronic dark decay of holograms in LiNbO3:Fe crystals,” Appl. Phys. Lett. 78, 4076–4078 (2001).
[Crossref]

Ouyang, C.

Peithmann, K.

K. Peithmann, A. Wiebrock, and K. Buse, “Photorefractive properties of highly doped lithium niobate crystals in the visible and near-infrared,” Appl. Phys. B. 68, 777–784 (1999).
[Crossref]

Psaltis, D.

Y. Yang, I. Nee, D. Psaltis, M. Luennemann, D. Berben, U. Hartwig, and K. Buse, “Photorefractive properties of lithium niobate crystals doped with manganese,” J. Opt. Soc. Am. B. 20,1491–1502 (2003).
[Crossref]

Y. Yang, I. Nee, K. Buse, and D. Psaltis, “Ionic and electronic dark decay of holograms in LiNbO3:Fe crystals,” Appl. Phys. Lett. 78, 4076–4078 (2001).
[Crossref]

G. W. Burr and D. Psaltis, “Effect of the oxidation state of LiNbO3:Fe on the diffraction efficiency of multiple holograms,” Opt. Lett. 21, 893–895 (1996)
[Crossref] [PubMed]

D. Psaltis, D. Brady, and K. Wagner, “Adaptive optical networks using photorefractive crystals,” Appl. Opt. 27, 1752–1759 (1988).
[Crossref]

H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic Data Storage (Springer, New York, 2000).
[Crossref]

Qiao, H.

H. Qiao, J. Xu, Q. Wu, X. Yu, Q. Sun, X. Zhang, G. Zhang, and T. Volk, “An increase of photorefractive sensitivity in In: LiNbO3 crystal,” Opt. Mater. 23, 269–272 (2003).
[Crossref]

Rubinina, N.

T. Volk, N. Rubinina, and M. Wöhlecke, “Optical-damage-resistant impurities in lithium niobate,” J. Opt. Soc. Am. B. 11, 1681–1687 (1994).
[Crossref]

Shelby, R. M.

Sincerbox, G. T.

H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic Data Storage (Springer, New York, 2000).
[Crossref]

Sun, Q.

H. Qiao, J. Xu, Q. Wu, X. Yu, Q. Sun, X. Zhang, G. Zhang, and T. Volk, “An increase of photorefractive sensitivity in In: LiNbO3 crystal,” Opt. Mater. 23, 269–272 (2003).
[Crossref]

Tao, S.

S. Tao, M. Lee, K. Kitamura, H. Hatano, L. Galambos, and L. Hesselink, “Holographic properties of doped stoichiometric LiNbO3 crystals,” in Fifth International Symposium on Optical Storage, F. Gan and L. Hou, eds., Proc. SPIE, 4085, 46–50 (2001).

Tomita, Y.

G. Zhang, Y. Tomita, X. Zhang, and J. Xu, “Near-infrared holographic recording with quasi-nonvolatile readout in LiNbO3: In,Fe,” Appl. Phys. Lett. 81, 1393–1395 (2002).
[Crossref]

Volk, T.

H. Qiao, J. Xu, Q. Wu, X. Yu, Q. Sun, X. Zhang, G. Zhang, and T. Volk, “An increase of photorefractive sensitivity in In: LiNbO3 crystal,” Opt. Mater. 23, 269–272 (2003).
[Crossref]

T. Volk, N. Rubinina, and M. Wöhlecke, “Optical-damage-resistant impurities in lithium niobate,” J. Opt. Soc. Am. B. 11, 1681–1687 (1994).
[Crossref]

Wagner, K.

Wang, J.

Wiebrock, A.

K. Peithmann, A. Wiebrock, and K. Buse, “Photorefractive properties of highly doped lithium niobate crystals in the visible and near-infrared,” Appl. Phys. B. 68, 777–784 (1999).
[Crossref]

Wöhlecke, M.

T. Volk, N. Rubinina, and M. Wöhlecke, “Optical-damage-resistant impurities in lithium niobate,” J. Opt. Soc. Am. B. 11, 1681–1687 (1994).
[Crossref]

Wu, M.

Wu, Q.

H. Qiao, J. Xu, Q. Wu, X. Yu, Q. Sun, X. Zhang, G. Zhang, and T. Volk, “An increase of photorefractive sensitivity in In: LiNbO3 crystal,” Opt. Mater. 23, 269–272 (2003).
[Crossref]

Xu, J.

H. Qiao, J. Xu, Q. Wu, X. Yu, Q. Sun, X. Zhang, G. Zhang, and T. Volk, “An increase of photorefractive sensitivity in In: LiNbO3 crystal,” Opt. Mater. 23, 269–272 (2003).
[Crossref]

G. Zhang, Y. Tomita, X. Zhang, and J. Xu, “Near-infrared holographic recording with quasi-nonvolatile readout in LiNbO3: In,Fe,” Appl. Phys. Lett. 81, 1393–1395 (2002).
[Crossref]

N.Y. Kamber, J. Xu, S.M. Mikha, G. Zhang, S. Liu, and G. Zhang, “Threshold effect of incident light intensity for the resistance against the photorefractive light-induced scattering in doped lithium niobate crystals”, Opt.Commun. 176,91–96 (2000).
[Crossref]

Yang, Y.

Y. Yang, I. Nee, D. Psaltis, M. Luennemann, D. Berben, U. Hartwig, and K. Buse, “Photorefractive properties of lithium niobate crystals doped with manganese,” J. Opt. Soc. Am. B. 20,1491–1502 (2003).
[Crossref]

Y. Yang, I. Nee, K. Buse, and D. Psaltis, “Ionic and electronic dark decay of holograms in LiNbO3:Fe crystals,” Appl. Phys. Lett. 78, 4076–4078 (2001).
[Crossref]

Yu, X.

H. Qiao, J. Xu, Q. Wu, X. Yu, Q. Sun, X. Zhang, G. Zhang, and T. Volk, “An increase of photorefractive sensitivity in In: LiNbO3 crystal,” Opt. Mater. 23, 269–272 (2003).
[Crossref]

Zhang, G.

H. Qiao, J. Xu, Q. Wu, X. Yu, Q. Sun, X. Zhang, G. Zhang, and T. Volk, “An increase of photorefractive sensitivity in In: LiNbO3 crystal,” Opt. Mater. 23, 269–272 (2003).
[Crossref]

G. Zhang, Y. Tomita, X. Zhang, and J. Xu, “Near-infrared holographic recording with quasi-nonvolatile readout in LiNbO3: In,Fe,” Appl. Phys. Lett. 81, 1393–1395 (2002).
[Crossref]

N.Y. Kamber, J. Xu, S.M. Mikha, G. Zhang, S. Liu, and G. Zhang, “Threshold effect of incident light intensity for the resistance against the photorefractive light-induced scattering in doped lithium niobate crystals”, Opt.Commun. 176,91–96 (2000).
[Crossref]

N.Y. Kamber, J. Xu, S.M. Mikha, G. Zhang, S. Liu, and G. Zhang, “Threshold effect of incident light intensity for the resistance against the photorefractive light-induced scattering in doped lithium niobate crystals”, Opt.Commun. 176,91–96 (2000).
[Crossref]

Zhang, X.

H. Qiao, J. Xu, Q. Wu, X. Yu, Q. Sun, X. Zhang, G. Zhang, and T. Volk, “An increase of photorefractive sensitivity in In: LiNbO3 crystal,” Opt. Mater. 23, 269–272 (2003).
[Crossref]

G. Zhang, Y. Tomita, X. Zhang, and J. Xu, “Near-infrared holographic recording with quasi-nonvolatile readout in LiNbO3: In,Fe,” Appl. Phys. Lett. 81, 1393–1395 (2002).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B. (1)

K. Peithmann, A. Wiebrock, and K. Buse, “Photorefractive properties of highly doped lithium niobate crystals in the visible and near-infrared,” Appl. Phys. B. 68, 777–784 (1999).
[Crossref]

Appl. Phys. Lett. (2)

Y. Yang, I. Nee, K. Buse, and D. Psaltis, “Ionic and electronic dark decay of holograms in LiNbO3:Fe crystals,” Appl. Phys. Lett. 78, 4076–4078 (2001).
[Crossref]

G. Zhang, Y. Tomita, X. Zhang, and J. Xu, “Near-infrared holographic recording with quasi-nonvolatile readout in LiNbO3: In,Fe,” Appl. Phys. Lett. 81, 1393–1395 (2002).
[Crossref]

J. Opt. Soc. Am. B. (2)

T. Volk, N. Rubinina, and M. Wöhlecke, “Optical-damage-resistant impurities in lithium niobate,” J. Opt. Soc. Am. B. 11, 1681–1687 (1994).
[Crossref]

Y. Yang, I. Nee, D. Psaltis, M. Luennemann, D. Berben, U. Hartwig, and K. Buse, “Photorefractive properties of lithium niobate crystals doped with manganese,” J. Opt. Soc. Am. B. 20,1491–1502 (2003).
[Crossref]

Opt. Lett. (3)

Opt. Mater. (1)

H. Qiao, J. Xu, Q. Wu, X. Yu, Q. Sun, X. Zhang, G. Zhang, and T. Volk, “An increase of photorefractive sensitivity in In: LiNbO3 crystal,” Opt. Mater. 23, 269–272 (2003).
[Crossref]

Opt.Commun. (1)

N.Y. Kamber, J. Xu, S.M. Mikha, G. Zhang, S. Liu, and G. Zhang, “Threshold effect of incident light intensity for the resistance against the photorefractive light-induced scattering in doped lithium niobate crystals”, Opt.Commun. 176,91–96 (2000).
[Crossref]

Opt.Express (1)

Y. Liao, Y. Guo, L. Cao, X. Ma, Q. He, and G. Jin, “Experiment on parallel correlated recognition of 2030 human faces based on speckle modulation,” Opt.Express 12, 047–4052 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-17-4047.
[Crossref]

Other (2)

H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic Data Storage (Springer, New York, 2000).
[Crossref]

S. Tao, M. Lee, K. Kitamura, H. Hatano, L. Galambos, and L. Hesselink, “Holographic properties of doped stoichiometric LiNbO3 crystals,” in Fifth International Symposium on Optical Storage, F. Gan and L. Hou, eds., Proc. SPIE, 4085, 46–50 (2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimentally measured and fitting curves of In:Fe:LiNbO3(In:2mol%,Fe:0.03wt.%)

Fig. 2.
Fig. 2.

Dynamic range M/# and sensitivity S of In:Fe:LiNbO3 crystals versus In concentrations.

Fig. 3.
Fig. 3.

The reconstructed hologram from: (a) Fe:LiNbO3 crystal (Fe1); (b) In:Fe:LiNbO3 crystal (InFe5).

Fig. 4.
Fig. 4.

The correlation spots array of the 2030 holograms read by a white blank in In:Fe:LiNbO3 crystal.

Tables (1)

Tables Icon

Table 1. Photorefractive properties of Fe1&InFe5 crystals

Metrics