Abstract

Based on analyzing and synthesizing the effects of In doping, Fe doping and oxidation state, we propose an efficient way to improve photorefractive properties of LiNbO3 crystal. According to the proposed way, a sample of In:Fe:LiNbO3 crystal is grown and achieves larger dynamic range, higher sensitivity and better signal-to-noise ratio than Fe:LiNbO3 crystal (Fe:0.03wt.%) that is generally considered as a preferable storage medium for high-density holographic data storage. In a coherent volume 0.074cm3 of this crystal, 2030 holograms have been successfully multiplexed and exactly identified in a compact volume holographic data storage and correlation recognition system.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic Data Storage (Springer, New York, 2000).
    [CrossRef]
  2. Y. Yang, I. Nee, D. Psaltis, M. Luennemann, D. Berben, U. Hartwig and K. Buse, �??Photorefractive properties of lithium niobate crystals doped with manganese,�?? J. Opt. Soc. Am. B. 20,1491-1502 (2003).
    [CrossRef]
  3. S. Tao, M. Lee, K. Kitamura, H.Hatano, L. Galambos, L. Hesselink, �??Holographic properties of doped stoichiometric LiNbO3 crystals,�?? in Fifth International Symposium on Optical Storage, F. Gan and L. Hou, eds., Proc. SPIE, 4085, 46-50 (2001).
  4. G. W. Burr, C. M. Jefferson, H. Coufal, M. Jurich, J. A. Honagle, R. M. Macfarlane, and R. M. Shelby, �??Volume holographic data storage at areal density of 250 gigapixels/in2,�?? Opt. Lett. 26, 444-446 (2001).
    [CrossRef]
  5. T. Volk, N. Rubinina, and M. Wöhlecke, �??Optical-damage-resistant impurities in lithium niobate,�?? J. Opt. Soc. Am. B. 11, 1681-1687 (1994).
    [CrossRef]
  6. N.Y. Kamber, J. Xu, S.M. Mikha, G. Zhang, S. Liu, G. Zhang, �??Threshold effect of incident light intensity for the resistance against the photorefractive light-induced scattering in doped lithium niobate crystals", Opt.Commun.176,91-96 (2000).
    [CrossRef]
  7. H. Qiao, J.Xu, Q. Wu, X. Yu, Q. Sun, X. Zhang, G. Zhang, and T. Volk, �??An increase of photorefractive sensitivity in In: LiNbO3 crystal,�?? Opt. Mater. 23, 269-272 (2003).
    [CrossRef]
  8. G. Zhang, Y. Tomita, X. Zhang, and J.Xu, �??Near-infrared holographic recording with quasi-nonvolatile readout in LiNbO3: In,Fe,�?? Appl. Phys. Lett. 81, 1393-1395 (2002).
    [CrossRef]
  9. K. Peithmann, A. Wiebrock, and K. Buse, �??Photorefractive properties of highly doped lithium niobate crystals in the visible and near-infrared,�?? Appl. Phys. B. 68, 777-784 (1999).
    [CrossRef]
  10. Q. He, G. Liu, X. Li, J. Wang, M. Wu, and G. Jin, �??Suppression of the influence of a photovoltaic dc field on volume holograms in Fe:LiNbO3,�?? Appl. Opt. 41, 4104-4107 (2002)
    [CrossRef] [PubMed]
  11. Y. Yang, I. Nee, K. Buse, and D. Psaltis, �??Ionic and electronic dark decay of holograms in LiNbO3:Fe crystals,�?? Appl. Phys. Lett. 78, 4076�??4078 (2001).
    [CrossRef]
  12. C. Ouyang, L. Cao, Q. He, Y. Liao, M. Wu, and G. Jin, �??Sidelobe suppression in volume holographic optical correlators by use of speckle modulation,�?? Opt. Lett. 28, 1972-1974 (2003).
    [CrossRef] [PubMed]
  13. Y. Liao, Y.Guo, L.Cao, X.Ma, Q.He, and G.Jin, �??Experiment on parallel correlated recognition of 2030 human faces based on speckle modulation,�?? Opt.Express 12, 047-4052 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-17-4047.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-17-4047</a>
    [CrossRef]
  14. D. Psaltis, D. Brady, and K. Wagner, �??Adaptive optical networks using photorefractive crystals,�?? Appl. Opt. 27, 1752-1759 (1988).
    [CrossRef]
  15. G. W. Burr, D. Psaltis, �??Effect of the oxidation state of LiNbO3:Fe on the diffraction efficiency of multiple holograms,�?? Opt. Lett. 21, 893-895 (1996)

Appl. Opt. (2)

Appl. Phys. B. (1)

K. Peithmann, A. Wiebrock, and K. Buse, �??Photorefractive properties of highly doped lithium niobate crystals in the visible and near-infrared,�?? Appl. Phys. B. 68, 777-784 (1999).
[CrossRef]

Appl. Phys. Lett. (2)

Y. Yang, I. Nee, K. Buse, and D. Psaltis, �??Ionic and electronic dark decay of holograms in LiNbO3:Fe crystals,�?? Appl. Phys. Lett. 78, 4076�??4078 (2001).
[CrossRef]

G. Zhang, Y. Tomita, X. Zhang, and J.Xu, �??Near-infrared holographic recording with quasi-nonvolatile readout in LiNbO3: In,Fe,�?? Appl. Phys. Lett. 81, 1393-1395 (2002).
[CrossRef]

J. Opt. Soc. Am. B. (2)

Y. Yang, I. Nee, D. Psaltis, M. Luennemann, D. Berben, U. Hartwig and K. Buse, �??Photorefractive properties of lithium niobate crystals doped with manganese,�?? J. Opt. Soc. Am. B. 20,1491-1502 (2003).
[CrossRef]

T. Volk, N. Rubinina, and M. Wöhlecke, �??Optical-damage-resistant impurities in lithium niobate,�?? J. Opt. Soc. Am. B. 11, 1681-1687 (1994).
[CrossRef]

Opt. Express (1)

Y. Liao, Y.Guo, L.Cao, X.Ma, Q.He, and G.Jin, �??Experiment on parallel correlated recognition of 2030 human faces based on speckle modulation,�?? Opt.Express 12, 047-4052 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-17-4047.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-17-4047</a>
[CrossRef]

Opt. Lett. (3)

Opt. Mater. (1)

H. Qiao, J.Xu, Q. Wu, X. Yu, Q. Sun, X. Zhang, G. Zhang, and T. Volk, �??An increase of photorefractive sensitivity in In: LiNbO3 crystal,�?? Opt. Mater. 23, 269-272 (2003).
[CrossRef]

Opt.Commun. (1)

N.Y. Kamber, J. Xu, S.M. Mikha, G. Zhang, S. Liu, G. Zhang, �??Threshold effect of incident light intensity for the resistance against the photorefractive light-induced scattering in doped lithium niobate crystals", Opt.Commun.176,91-96 (2000).
[CrossRef]

Proc. SPIE (1)

S. Tao, M. Lee, K. Kitamura, H.Hatano, L. Galambos, L. Hesselink, �??Holographic properties of doped stoichiometric LiNbO3 crystals,�?? in Fifth International Symposium on Optical Storage, F. Gan and L. Hou, eds., Proc. SPIE, 4085, 46-50 (2001).

Other (1)

H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic Data Storage (Springer, New York, 2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimentally measured and fitting curves of In:Fe:LiNbO3(In:2mol%,Fe:0.03wt.%)

Fig. 2.
Fig. 2.

Dynamic range M/# and sensitivity S of In:Fe:LiNbO3 crystals versus In concentrations.

Fig. 3.
Fig. 3.

The reconstructed hologram from: (a) Fe:LiNbO3 crystal (Fe1); (b) In:Fe:LiNbO3 crystal (InFe5).

Fig. 4.
Fig. 4.

The correlation spots array of the 2030 holograms read by a white blank in In:Fe:LiNbO3 crystal.

Tables (1)

Tables Icon

Table 1. Photorefractive properties of Fe1&InFe5 crystals

Metrics