Abstract

Both square-shaped and circular-shaped flattop modes were experimentally demonstrated in extended-cavity broad-area VCSELs using aspheric feedback mirrors. These refractive aspheric mirrors were fabricated by electron-beam lithography on curved substrates. Excellent single-mode operation and improved power extraction efficiency were observed. The three-mirror structure of the VCSEL and the state-of-the-art fabrication of the aspheric mirror contribute to the superior VCSEL performance. The modal loss analysis using a rigid three-mirror-cavity simulation method is discussed.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. H. J. Unold, S. W. Z. Mahmoud, R. Jäger, M. Grabherr, R. Michalzik, and K. J. Ebeling, �??Large-Area Single-Mode VCSELs and the Self-Aligned Surface Relief,�?? IEEE J. Sel. Top. Quantum Electron. 7, 386-392 (2001).
    [CrossRef]
  2. J. G. McInerney, A. Mooradian, A. Lewis, A.V. Shchegrov, E. M. Strzelecka, D. Lee, J. P. Watson, M. Liebman, G. P. Garey, B. D. Cantos, W. R. IIitchens, and D. IIeald, �??High-power surface emitting semiconductor laser with extended vertical compound cavity,�?? Electron. Lett. 39, 523-525 (2003).
    [CrossRef]
  3. B. J. Koch, J. R. Leger, A. Gopinath, and Z. Wang, �??Single-mode vertical cavity surface emitting laser by graded-index lens spatial filtering,�?? Appl. Phys. Lett. 70, 2359-2361 (1997).
    [CrossRef]
  4. C. Paré and P. A. Bélanger, �??Custom laser resonators using graded-phase mirrors: circular geometry,�?? IEEE J. Quantum Electron. 30, 1141-1148 (1994).
    [CrossRef]
  5. J. R. Leger, D. Chen, and G. Mowry, �??Design and performance of diffractive optics for custom laser resonators,�?? Appl. Opt. 34, 2498-2509 (1995).
    [CrossRef] [PubMed]
  6. Z. H. Yang and J. R. Leger, �??Three-mirror resonator with aspheric feedback mirror for laser spatial mode selection and mode shaping,�?? IEEE J. Quantum Electron. 40, 1258-1269 (2004).
    [CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

B. J. Koch, J. R. Leger, A. Gopinath, and Z. Wang, �??Single-mode vertical cavity surface emitting laser by graded-index lens spatial filtering,�?? Appl. Phys. Lett. 70, 2359-2361 (1997).
[CrossRef]

Electron. Lett. (1)

J. G. McInerney, A. Mooradian, A. Lewis, A.V. Shchegrov, E. M. Strzelecka, D. Lee, J. P. Watson, M. Liebman, G. P. Garey, B. D. Cantos, W. R. IIitchens, and D. IIeald, �??High-power surface emitting semiconductor laser with extended vertical compound cavity,�?? Electron. Lett. 39, 523-525 (2003).
[CrossRef]

IEEE J. Quantum Electron. (2)

C. Paré and P. A. Bélanger, �??Custom laser resonators using graded-phase mirrors: circular geometry,�?? IEEE J. Quantum Electron. 30, 1141-1148 (1994).
[CrossRef]

Z. H. Yang and J. R. Leger, �??Three-mirror resonator with aspheric feedback mirror for laser spatial mode selection and mode shaping,�?? IEEE J. Quantum Electron. 40, 1258-1269 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

H. J. Unold, S. W. Z. Mahmoud, R. Jäger, M. Grabherr, R. Michalzik, and K. J. Ebeling, �??Large-Area Single-Mode VCSELs and the Self-Aligned Surface Relief,�?? IEEE J. Sel. Top. Quantum Electron. 7, 386-392 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

An aspheric mirror surface for square-flattop mode shaping compared with a spherical surface with a radius of curvature of 9.3 mm.

Fig. 2.
Fig. 2.

Fabricated aspheric mirror surface figure (for square-flattop mode shaping) after removing the underlying spherical envelope. (a) 2-D view, (b) 1-D slice along x at y=0.

Fig. 3.
Fig. 3.

Simulated modal loss ([1-γ 2] where γ is the round-trip eigenvalue) and modal discrimination ([γ0thmode2/γ1stmode2]) as a function of the external cavity length.

Fig. 4.
Fig. 4.

Square flattop mode in circular aperture VCSEL. (a) 2-D near-field intensity, (b) 1-D slice of far-field intensity.

Fig. 5.
Fig. 5.

Spectra of the extended-cavity VCSELs with different configurations under pulsed driving current of 800 mA.

Fig. 6.
Fig. 6.

Single-mode power as a function of pulsed driving current for the extended-cavity VCSELs with different configurations.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

d P d I = ω 2 q η d with η d = η int α oc α oc + α int

Metrics