Abstract

A pulsed self-seeded double-ring optical parametric oscillator realized with periodically poled KTiOPO4 is demonstrated. When pumped from two opposite directions, the cavity supported two automatically aligned, independent, counter-propagating parametric wave pairs whose wavelength could be continuously tuned by varying a single degree of freedom. The tuning range from 1189 nm to 1267 nm has been achieved for the resonant idler waves. The parametric rings could be cross-seeded by using a feedback arrangement. Here, Fourier-domain filtering was utilized to spectrally manipulate the output spectrum of the seeded ring oscillator. Parametric ring oscillator efficiencies of 46 % were achieved.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. M. Peltz, U. Bader, A.Borsutzky, R. Wallenstein, J. Hellström, H. Karlsson, V.Pasiskevicius and F. Laurell, �??Optical parametric oscillators for high pulse energy and high average power operation based on large aperture periodically poled KTP and RTA,�?? Appl. Phys. B 73, 663-670 (2001)
    [CrossRef]
  2. P. Feve, O. Pacaud, B. Boulanger, B. Menaert, J. Hellström, V. Pasiskevicius and F. Laurell, �??Widely and continuously tunable optical parametric oscillator based on a cylindrical periodically poled KTiOPO4 crystal,�?? Opt. Let. 26, 1882-1884 (2001).
    [CrossRef]
  3. V. Smilgevicius, A. Stabinis, A. Piskarskas, V. Pasiskevicius, J. Hellström, S. Wang and F. Laurell, �??Noncollinear optical parametric oscillator with periodically poled KTP,�?? Opt. Commun. 173, 365-369 (2000).
    [CrossRef]
  4. M. J. Missey, V. Dominic and P. E. Powers, �??Periodically poled lithium niobate monolithic nanosecond optical parametric oscillators and generators,�?? Opt. Lett. 24, 1227-1229 (1999).
    [CrossRef]
  5. S. T. Yang and S. P. Velsko, �??Frequency-agile kilohertz repetition-rate optical parametric oscillator based on periodically poled lithium niobate,�?? Opt. Lett. 24, 133-135 (1999).
    [CrossRef]
  6. P. Gross, M. E. Klein, H. Ridderbusch, D.-H. Lee, J.-P. Meyn, R. Wallenstein, K.-J.Boller, �??Wide wavelength tuning of an optical parametric oscillator through electro-optic shaping of the gain spectrum,�?? Opt. Lett. 27, 1433-1435 (2002).
    [CrossRef]
  7. S. J. Brosnan and R. L. Byer, �??Optical parametric oscillator threshold and linewidth studies,�?? IEEE J. Quantum Elec. 15, 415-431 (1979).
    [CrossRef]
  8. G. W. Baxter, Y. He and B. J. Orr, �??A pulsed optical parametric oscillator, based on periodically poled lithium niobate (PPLN), for high resolution spectroscopy,�?? Appl. Phys. B 67, 753-756 (1998).
    [CrossRef]
  9. A. Borsutzky, �??Frequency control of pulsed optical parametric oscillators,�?? Quantum Semiclass. Opt. 9, 191-207 (1997).
    [CrossRef]
  10. M. Rahm, G. Anstett, J. Bartschke, T. Bauer, R. Beigang and R. Wallenstein, �??Widely tunable narrow-linewidth nanosecond optical parametric generator with self-injection seeding,�?? Appl. Phys B 79, 535-538 (2004).
    [CrossRef]
  11. M. Tiihonen, V. Pasiskevicius and F. Laurell, �??Spectral and spatial limiting in idler-resonant optical parametric oscillator with PPKTP,�?? in Advanced Solid-State Photonics, none eds., Vol. 94 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 2004), (to be published nov. 2004).
  12. J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic Press, 1996), Chap. 7.

Advanced Solid-State Photonics 2004

M. Tiihonen, V. Pasiskevicius and F. Laurell, �??Spectral and spatial limiting in idler-resonant optical parametric oscillator with PPKTP,�?? in Advanced Solid-State Photonics, none eds., Vol. 94 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 2004), (to be published nov. 2004).

Appl. Phys B

M. Rahm, G. Anstett, J. Bartschke, T. Bauer, R. Beigang and R. Wallenstein, �??Widely tunable narrow-linewidth nanosecond optical parametric generator with self-injection seeding,�?? Appl. Phys B 79, 535-538 (2004).
[CrossRef]

Appl. Phys. B

G. W. Baxter, Y. He and B. J. Orr, �??A pulsed optical parametric oscillator, based on periodically poled lithium niobate (PPLN), for high resolution spectroscopy,�?? Appl. Phys. B 67, 753-756 (1998).
[CrossRef]

M. Peltz, U. Bader, A.Borsutzky, R. Wallenstein, J. Hellström, H. Karlsson, V.Pasiskevicius and F. Laurell, �??Optical parametric oscillators for high pulse energy and high average power operation based on large aperture periodically poled KTP and RTA,�?? Appl. Phys. B 73, 663-670 (2001)
[CrossRef]

IEEE J. Quantum Elec.

S. J. Brosnan and R. L. Byer, �??Optical parametric oscillator threshold and linewidth studies,�?? IEEE J. Quantum Elec. 15, 415-431 (1979).
[CrossRef]

Opt. Commun.

V. Smilgevicius, A. Stabinis, A. Piskarskas, V. Pasiskevicius, J. Hellström, S. Wang and F. Laurell, �??Noncollinear optical parametric oscillator with periodically poled KTP,�?? Opt. Commun. 173, 365-369 (2000).
[CrossRef]

Opt. Let.

P. Feve, O. Pacaud, B. Boulanger, B. Menaert, J. Hellström, V. Pasiskevicius and F. Laurell, �??Widely and continuously tunable optical parametric oscillator based on a cylindrical periodically poled KTiOPO4 crystal,�?? Opt. Let. 26, 1882-1884 (2001).
[CrossRef]

Opt. Lett.

Quantum Semiclass. Opt.

A. Borsutzky, �??Frequency control of pulsed optical parametric oscillators,�?? Quantum Semiclass. Opt. 9, 191-207 (1997).
[CrossRef]

Other

J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic Press, 1996), Chap. 7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig 1.
Fig 1.

Singly-pumped OPO setup.

Fig. 2.
Fig. 2.

Double-pumped OPO setup

Fig. 3.
Fig. 3.

Self-seeded double-pumped OPO setup.

Fig. 4.
Fig. 4.

Measured pump depletion as a function of pump intensity. The forward pumped OPO (solid circles), unseeded backward pumped OPO (solid squares), and the seeded backward pumped (open triangles) OPO. In the latter case the intensity of the forward pump P1 was kept constant at 200 MW/cm2.

Fig. 5. (a)
Fig. 5. (a)

Output spectrum for the P2 idler spectrum, when the seed was manipulated with a beam block in the Fourier plane.

Fig. 5. (b)
Fig. 5. (b)

Output spectrum when seeded from a thin strip-mirror in the Fourier plane (high peak, red curve) and unseeded idler spectrum (broader spectrum, black curve).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

θ i 2 = 2 k s ( K g + k g + k i k p ) k i k s + k i 2 .
θ s = k i k s θ i

Metrics