Abstract

We have observed laser action from optically-pumped InAs-quantum-dots embedded in a line-defect waveguide in an air-bridge type GaAs-photonic-crystal slab (an array of air-holes). The lasing is found to occur without any optical cavity such as a set of Fabry-Perot mirrors. Comparison of the observed transmittance spectrum with the calculated band dispersion of the W3 defect-mode enables us to specify the lasing wavelength as that at the band edge. From this fact it follows that distributed feedback mechanism at the band edge with a vanishingly small group-velocity should be responsible for the present lasing. Usefulness of this kind of compact laser in a future ultrafast planar photonic integrated circuit is discussed.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. E. Yablonovitch, �??Inhibited spontaneous emission in solid-state physics and electronics,�?? Phys. Rev. Lett. 58, 2059-2062 (1987).
    [CrossRef] [PubMed]
  2. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals; Molding the Flow of Light (Princeton University Press, Princeton, 1995).
  3. Y. Sugimoto, N. Ikeda, N. Carlsson, N. Kawai, K. Inoue, and K. Asakawa, �??Light propagation characteristics of photonic crystal waveguide for miniaturized ultra-fast optical-pulse control/delay devices,�?? in Photonic Technology in the 21st Century, Proc. SPIE 4598, 58-72 (2002).
  4. S. Kohmoto, H. Nakamura, T. Ishikawa, and K. Asakawa, �??Site-controlled self-organization of individual InAs quantum dots by scanning probe-assisted nanolithography,�?? Appl. Phys. Lett. 75, 3488-3490 (1999).
    [CrossRef]
  5. K. Inoue, M. Sasada, J. Kawamata, K. Sakoda, and J. W. Haus, �??A Two-Dimensional Photonic Crystal Laser,�?? Jpn. J. Appl. Phys. 38, L157-L159 (1999).
    [CrossRef]
  6. M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slisher, J. D. Joannopoulos, and O. Nalamasu, �??Laser action from two-dimensional distributed feedback in photonic crystals,�?? Appl. Phys. Lett. 74, 7-9 (1999).
    [CrossRef]
  7. M. Notomi, H. Suzuki, and T. Tamamura, �??Directional lasing oscillation of two-dimensional organic photonic crystal lasers at several photonic band gaps,�?? Appl. Phys. Lett. 78, 1325-1327 (2001).
    [CrossRef]
  8. Y. Sugimoto, Y. Tanaka, N. Ikeda, Y. Nakamura, K. Asakawa, and K. Inoue, "Low propagation loss of 0.76 dB/mm in GaAs-based single-line-defect two-dimensional photonic crystal slab waveguides up to 1 cm in length," Opt. Express 12, 1090-1096 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1090">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1090</a>.
    [CrossRef] [PubMed]
  9. K. Inoue, Y. Sugimoto, N. Ikeda, Y. Tanaka, K. Asakawa, H. Sasaki, and K. Ishida, �??Ultra-Small Photonic-Crystal-Waveguide-Based Y-Splitters Useful in the Near-Infrared Wavelength Region,�?? Jpn. J. Appl. Phys. 43, L446-L448 (2004).
    [CrossRef]
  10. K. Inoue, Y. Sugimoto, N. Ikeda, Y. Tanaka, K. Asakawa, T. Maruyama, K. Miyashita, K. Ishida, and Y. Watanabe, �??Ultra-Small GaAs-Photonic-Crystal-Waveguide-Based Near-Infrared Components: Fabrication, Guided-Mode Identification, and Estimation of Low-Loss and Broad Band-Width in Straight Waveguides, 60º-Bends, and Y-splitters,�?? Jpn. J. Appl. Phys. 43, 6112-6124 (2004).
    [CrossRef]
  11. A. Sugitatsu and S. Noda, �??Room temperature operation of 2D photonic crystal slab defect-waveguide laser with optical pump,�?? Electron. Lett. 39, 213-214 (2003).
    [CrossRef]
  12. A. Sugitatsu, T. Asano and S. Noda, �??Characterization of line-defect-waveguide lasers in two-dimensional photonic-crystal slabs,�?? Appl. Phys. Lett. 84, 5395-5397 (2004).
    [CrossRef]
  13. K. Inoshita and T. Baba, �??Lasing at bend, branch and intersection of photonic crystal waveguides,�?? Electron. Lett. 39, 844-845 (2003).
    [CrossRef]
  14. H. Y. Ryu, S. H. Kwon, Y. J. Lee, and Y. H. Lee, �??Very-low threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs,�?? Appl. Phys. Lett. 80, 3476-3468 (2002).
    [CrossRef]
  15. Y. Sugimoto, Y. Tanaka, N. Ikeda, T. Yang, H. Nakamura, K. Asakawa, K. Inoue, T. Maruyama, K. Miyashita, K. Ishida, and Y. Watanabe, �??Design, fabrication, and characterization of coupling-strength-controlled directional coupler based on two-dimensional photonic-crystal slab waveguides,�?? Appl. Phys. Lett. 83, 3236-3238 (2003).
    [CrossRef]

Appl. Phys. Lett.

S. Kohmoto, H. Nakamura, T. Ishikawa, and K. Asakawa, �??Site-controlled self-organization of individual InAs quantum dots by scanning probe-assisted nanolithography,�?? Appl. Phys. Lett. 75, 3488-3490 (1999).
[CrossRef]

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slisher, J. D. Joannopoulos, and O. Nalamasu, �??Laser action from two-dimensional distributed feedback in photonic crystals,�?? Appl. Phys. Lett. 74, 7-9 (1999).
[CrossRef]

M. Notomi, H. Suzuki, and T. Tamamura, �??Directional lasing oscillation of two-dimensional organic photonic crystal lasers at several photonic band gaps,�?? Appl. Phys. Lett. 78, 1325-1327 (2001).
[CrossRef]

A. Sugitatsu, T. Asano and S. Noda, �??Characterization of line-defect-waveguide lasers in two-dimensional photonic-crystal slabs,�?? Appl. Phys. Lett. 84, 5395-5397 (2004).
[CrossRef]

H. Y. Ryu, S. H. Kwon, Y. J. Lee, and Y. H. Lee, �??Very-low threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs,�?? Appl. Phys. Lett. 80, 3476-3468 (2002).
[CrossRef]

Y. Sugimoto, Y. Tanaka, N. Ikeda, T. Yang, H. Nakamura, K. Asakawa, K. Inoue, T. Maruyama, K. Miyashita, K. Ishida, and Y. Watanabe, �??Design, fabrication, and characterization of coupling-strength-controlled directional coupler based on two-dimensional photonic-crystal slab waveguides,�?? Appl. Phys. Lett. 83, 3236-3238 (2003).
[CrossRef]

Electron. Lett.

K. Inoshita and T. Baba, �??Lasing at bend, branch and intersection of photonic crystal waveguides,�?? Electron. Lett. 39, 844-845 (2003).
[CrossRef]

A. Sugitatsu and S. Noda, �??Room temperature operation of 2D photonic crystal slab defect-waveguide laser with optical pump,�?? Electron. Lett. 39, 213-214 (2003).
[CrossRef]

Jpn. J. Appl. Phys

K. Inoue, Y. Sugimoto, N. Ikeda, Y. Tanaka, K. Asakawa, T. Maruyama, K. Miyashita, K. Ishida, and Y. Watanabe, �??Ultra-Small GaAs-Photonic-Crystal-Waveguide-Based Near-Infrared Components: Fabrication, Guided-Mode Identification, and Estimation of Low-Loss and Broad Band-Width in Straight Waveguides, 60º-Bends, and Y-splitters,�?? Jpn. J. Appl. Phys. 43, 6112-6124 (2004).
[CrossRef]

Jpn. J. Appl. Phys.

K. Inoue, Y. Sugimoto, N. Ikeda, Y. Tanaka, K. Asakawa, H. Sasaki, and K. Ishida, �??Ultra-Small Photonic-Crystal-Waveguide-Based Y-Splitters Useful in the Near-Infrared Wavelength Region,�?? Jpn. J. Appl. Phys. 43, L446-L448 (2004).
[CrossRef]

K. Inoue, M. Sasada, J. Kawamata, K. Sakoda, and J. W. Haus, �??A Two-Dimensional Photonic Crystal Laser,�?? Jpn. J. Appl. Phys. 38, L157-L159 (1999).
[CrossRef]

Opt. Express

Phys. Rev. Lett.

E. Yablonovitch, �??Inhibited spontaneous emission in solid-state physics and electronics,�?? Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

Proc. SPIE

Y. Sugimoto, N. Ikeda, N. Carlsson, N. Kawai, K. Inoue, and K. Asakawa, �??Light propagation characteristics of photonic crystal waveguide for miniaturized ultra-fast optical-pulse control/delay devices,�?? in Photonic Technology in the 21st Century, Proc. SPIE 4598, 58-72 (2002).

Other

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals; Molding the Flow of Light (Princeton University Press, Princeton, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Scanning electron microscope (SEM) images of (a) W3- and (b) W1-line-defect PCS-WGs, which were taken from one side of the cleaved edge. Notice that the cladding layer beneath the core layer in the photonic crystal area was cleanly dissolved.

Fig. 2.
Fig. 2.

Variation of the emission spectrum with the increase of pumping fluence; the emission was observed with an optical fiber placed in front of the cleaved edge of a W3 line-defect PCW-WG. The pumping fluence is (a) 1.65×105, (b) 4.95×105, and (c) 5.5×106 W/cm2, respectively.

Fig. 3.
Fig. 3.

A plot of the intensity of the narrow spectral line (laser) at 1281 nm as a function of pumping fluence.

Fig. 4.
Fig. 4.

Transmission spectrum (red line) of the W3 PCS-WG sample. For comparison the spectrum (black line) for a similar sample without QDs is also presented with 28 nm red-shifted relative to the former spectrum; for detail see the text.

Fig. 5.
Fig. 5.

The calculated band structure for the W3 PCS-WG sample (left) with QDs embedded; the parameters are a=315 nm, 2r/a=0.56, d=280 nm. The band structure of the W1 PCS-WG sample (right) is also presented for comparison

Metrics