Abstract

We have designed, fabricated and characterized surface plasmon waveguides for near infrared light in the telecommunications spectrum. These waveguides exhibit losses of -1.2dB/µm and can guide light around 0.5 µm bends. Light can also be efficiently coupled between more conventional silicon waveguides and these plasmon waveguides with compact couplers, and we demonstrate that surface plasmon optical devices can be constructed by using planar circuit fabrication techniques. The large optical field enhancements of metallic surface plasmon devices are expected to lead to a new class of plasmonic optical devices, which will take advantage of the large field enhancements at the surfaces of the plasmon waveguides for nonlinear or sensing functionality, while utilizing the low losses available in silicon waveguides to move light longer distances on chip.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. Takahara, Y. Suguru, T. Hiroaki, A. Morimoto, and T. Kobayashi, �??Guiding of a one-dimensional optical beam with nanometer diameter,�?? Opt. Lett 22, 475-477 (1997).
    [CrossRef] [PubMed]
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, �??Surface Plasmon Subwavelength Optics,�?? Nature 424, 824 -830 (2003).
    [CrossRef] [PubMed]
  3. Palik, E., Handbook of Optical Constants of Solids (Academic Press, Washington, D.C., 1985).
  4. T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. Bozhevolnyi, �??Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,�?? Appl. Phys. Lett. 82, 668-670 (2003).
    [CrossRef]
  5. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, E. E. Koel, and A. A. Requicha, �??Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,�?? Nature Mat. 2, 229-232 (2003).
    [CrossRef]
  6. P. Berini, �??Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,�?? Phys. Rev. B 61, 10484-10503 (2000).
    [CrossRef]
  7. T. Baehr-Jones, M. Hochberg, C. Walker and A. Scherer, �??High-Q ring resonators in thin silicon-oninsulator,�?? Appl. Phys. Lett. 85, (2004).
    [CrossRef]
  8. D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, S. I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, �??An Out-of-Plane Grating Coupler for Efficient Butt-Coupling Between Compact Planar Waveguides and Single-Mode Fibers,�?? IEEE J. Quantum Electron. 38, 949 (2002).
    [CrossRef]
  9. V. Almeida, R. Panepucci, and M. Lipson �??Nanotaper for compact mode conversion,�?? Opt. Lett. 28, 1302-1304 (2003).
    [CrossRef] [PubMed]
  10. T. Baehr-Jones, M. Hochberg, and A. Scherer, �??A Distributed Implementation of the Finite-Difference Time Domain (FDTD) Method,�?? Applied Computational Electromagnetics Society, 2001.
  11. J. Vuckovic, M. Loncar, and A. Scherer, �??Surface plasmon enhanced light-emitting diode,�?? IEEE J. Quantum Electron. 36, 1131-1144 (2000).
    [CrossRef]
  12. A. Taflove, Computational Electromagnetics, (Artech House, Boston, 1995).
  13. W. Henschel, Y. M. Geirgiev, and H. Kurz, �??Study of a high contrast process for hydrogen slisesquioxane as a negative tone electron beam resist,�?? Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 21, 2018-2025 (2003).
    [CrossRef]
  14. I. W. Rangelow, and H. Loschner, �??Reactive ion etching for microelectrical mechanical system fabrication,�?? Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 13, 2394-2399 (1995).
    [CrossRef]

Appl. Phys. Lett.

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. Bozhevolnyi, �??Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,�?? Appl. Phys. Lett. 82, 668-670 (2003).
[CrossRef]

T. Baehr-Jones, M. Hochberg, C. Walker and A. Scherer, �??High-Q ring resonators in thin silicon-oninsulator,�?? Appl. Phys. Lett. 85, (2004).
[CrossRef]

Applied Comp. Electro. Society 2001

T. Baehr-Jones, M. Hochberg, and A. Scherer, �??A Distributed Implementation of the Finite-Difference Time Domain (FDTD) Method,�?? Applied Computational Electromagnetics Society, 2001.

IEEE J. Quantum Electron.

J. Vuckovic, M. Loncar, and A. Scherer, �??Surface plasmon enhanced light-emitting diode,�?? IEEE J. Quantum Electron. 36, 1131-1144 (2000).
[CrossRef]

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, S. I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, �??An Out-of-Plane Grating Coupler for Efficient Butt-Coupling Between Compact Planar Waveguides and Single-Mode Fibers,�?? IEEE J. Quantum Electron. 38, 949 (2002).
[CrossRef]

Journal of Vacuum Science & Techn. B

W. Henschel, Y. M. Geirgiev, and H. Kurz, �??Study of a high contrast process for hydrogen slisesquioxane as a negative tone electron beam resist,�?? Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 21, 2018-2025 (2003).
[CrossRef]

Journal of Vacuum Science & Technology B

I. W. Rangelow, and H. Loschner, �??Reactive ion etching for microelectrical mechanical system fabrication,�?? Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 13, 2394-2399 (1995).
[CrossRef]

Nature

W. L. Barnes, A. Dereux, and T. W. Ebbesen, �??Surface Plasmon Subwavelength Optics,�?? Nature 424, 824 -830 (2003).
[CrossRef] [PubMed]

Nature Mat.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, E. E. Koel, and A. A. Requicha, �??Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,�?? Nature Mat. 2, 229-232 (2003).
[CrossRef]

Opt. Lett.

Phys. Rev. B

P. Berini, �??Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,�?? Phys. Rev. B 61, 10484-10503 (2000).
[CrossRef]

Other

Palik, E., Handbook of Optical Constants of Solids (Academic Press, Washington, D.C., 1985).

A. Taflove, Computational Electromagnetics, (Artech House, Boston, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

In A) and B) the E field vector components are rendered for the plasmon and silicon waveguides used in our study. C) shows the dispersion diagrams of both modes.

Fig. 2.
Fig. 2.

(a) shows a diagram of the layout of the dielectric plasmon coupling device. A rendering of a simulation is shown in (b), while (c) shows the simulated insertion loss for the coupling device in dB vs wavelength in µm. Also shown are the insertion losses when the coupling device separation is increased or decreased by 50 nm, as might happen due to misalignment in fabrication.

Fig. 3.
Fig. 3.

(a) shows a diagram of the layout of a plasmon waveguide length device, and (b) shows an SEM image of a fabricated device. (c) shows the scatter plot and fitted line, as well as a scatter plot of the 5 best calibration insertion loss structures for contrast. The axes are fiber to fiber insertion loss in dB versus plasmon waveguide length in µm.

Fig. 4.
Fig. 4.

Device layouts and renderings from FDTD simulations are shown in A), for the non-defective, metal-free, and defective devices, clockwise from top left. The out-of plane H field is rendered as blue and red. In B), the transmission spectra of the best measured devices of each type are shown, with fiber to fiber insertion loss in dB plotted against laser wavelength in µm. The baseline calibration loop spectrum is also shown for comparison.

Metrics