Abstract

We present a new and simple method to obtain ultrasound modulated optical tomography images in thick biological tissues with the use of a photorefractive crystal. The technique offers the advantage of spatially adapting the output speckle wavefront by analysing the signal diffracted by the interference pattern between this output field and a reference beam, recorded inside the photorefractive crystal. Averaging out due to random phases of the speckle grains vanishes, and we can use a fast single photodetector to measure the ultrasound modulated optical contrast. This technique offers a promising way to make direct measurements within the decorrelation time scale of living tissues.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. L. Sui, T. Murray, G. Maguluri, A. Nieva, F. Bloningen, C. DiMarzio and R. A. Roy, �??Enhanced detection of acousto-photonic scattering using a photorefractive crystal,�?? in Photons Plus Ultrasound : Imaging and Sensing, A. A. Oraevsky and L. V. Wang, eds., Proc. SPIE 5320, 164-171 (2004).
  2. D. Dolfi and F. Micheron, �??Imaging process and system for transillumination with photon frequency marking,�?? International Patent WO 98/00278(1989).
  3. S. L�?v�?que, A. Boccara, M. Lebec, and H. Saint-Jalmes, �??Ultrasonic tagging of phton paths in scattering media parallel speckle modulation processing,�?? Opt. Lett. 24, 181 (1999).
    [CrossRef]
  4. A. Lev and B. Sfez, �??direct, noninvasive detection of photon density in turbid media,�?? Opt. Lett. 27, 473-75 (2002).
    [CrossRef]
  5. A. Lev and B. Sfez, �??In vivo demonstration of ultrasound-modulated light technique,�?? J. Opt. Soc. Am. A 20 , 2347-2354 (2003).
    [CrossRef]
  6. J. Li and L. Wang, �??Methods for parallele-detection-based ultrasound-modulated optical tomography,�?? Appl. Opt. 41, 2079-2084 (2002).
    [CrossRef] [PubMed]
  7. S. L�?v�?que-Fort, �??Three-dimensional Acousto-Optic Imaging in Biological Tissues with Parallel Signal Processing,�?? Appl. Opt. 40, 1029-1036 (2000).
    [CrossRef]
  8. J. Li, S. Sakadzic, G. Ku, and L.Wang, �??Transmission- and side-detection configurations in ultrasound modulated optical tomography of thick biological tissues,�?? Appl. Opt. 42, 4088�??94 (2003).
    [CrossRef] [PubMed]
  9. M. Gross, P. Goy, and M. Al-Koussa, �??Shot-noise detection of ultrasound-tagged photons un ultrasound-modulated optical imaging,�?? Opt. Lett. 28, 2482-84 (2003).
    [CrossRef] [PubMed]
  10. P. Delaye, A. Blouin, D. Drolet, L. de Montmorillon, G. Roosen, and J. Monchalin, �??Detection of ultrasonic ion of a scattering surface by photorefractive InP:Fe under an applied DC field,�?? J. Opt. Soc. Am. B 14, 1723-34 (1997).
    [CrossRef]
  11. T. C. Hale and K. Telschow, �??Optical lock-in detection using photorefractive frequency domain processing,�?? Appl. Phys. Lett. 69, 2632-34 (1996).
    [CrossRef]
  12. F.M. Davidson, C.T. Field, �??Coherent homodyne optical communication recievers with photorefractive optical beam combiners,�?? IEEE J. Lightwave. Technol. 12, 1207-1223 (1994).
    [CrossRef]
  13. A. Yariv, Quantum electronics, 3rd ed. (John Wiley and Sons inc, 1989), 516-29.
  14. B. Campagne, A. Blouin, L. Pujol, and J. Montchalin, �??Compact and fast response ultrasonic detection device based on two-wave mixing in a gallium arsenide photorefractive crystal,�?? Rev. Sc. Int. 72, 2478-82 (2001).
  15. F. Leclerc, L. Collot and M. Gross,�??Numerical heterodyne holography using 2D photo-detector arrays,�?? Opt. Lett. 25, 716-18 (2000).

Appl. Opt.

Appl. Phys. Lett.

T. C. Hale and K. Telschow, �??Optical lock-in detection using photorefractive frequency domain processing,�?? Appl. Phys. Lett. 69, 2632-34 (1996).
[CrossRef]

IEEE J. Lightwave. Technol.

F.M. Davidson, C.T. Field, �??Coherent homodyne optical communication recievers with photorefractive optical beam combiners,�?? IEEE J. Lightwave. Technol. 12, 1207-1223 (1994).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Opt. Lett.

Proc. SPIE

L. Sui, T. Murray, G. Maguluri, A. Nieva, F. Bloningen, C. DiMarzio and R. A. Roy, �??Enhanced detection of acousto-photonic scattering using a photorefractive crystal,�?? in Photons Plus Ultrasound : Imaging and Sensing, A. A. Oraevsky and L. V. Wang, eds., Proc. SPIE 5320, 164-171 (2004).

Rev. Sc. Int.

B. Campagne, A. Blouin, L. Pujol, and J. Montchalin, �??Compact and fast response ultrasonic detection device based on two-wave mixing in a gallium arsenide photorefractive crystal,�?? Rev. Sc. Int. 72, 2478-82 (2001).

Other

D. Dolfi and F. Micheron, �??Imaging process and system for transillumination with photon frequency marking,�?? International Patent WO 98/00278(1989).

A. Yariv, Quantum electronics, 3rd ed. (John Wiley and Sons inc, 1989), 516-29.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Experimental setup. L: Single axial mode YAG: Nd3+ laser (λ=1064nm).BS:splits the laser beam into a probe(P) and a reference(R) beam. T: US piezo-transducer. AOM1,2: Acousto-optic modulators. EA ,ES (not drawn),ED : fields associated to the speckle wavefronts (see text). ER reference field. D: silicon photodetector (S=4.9mm 2). L1,2,3,4,5 : wide aperture NA=1 aspherical lenses. B: chiken breast. PR: GaAs photorefractive crystal. LA: Lock-in amplifier.

Fig. 2.
Fig. 2.

Normalised one shot ac-signal obtained with thicknesses t=2 cm (A) and 128 averaged (B) with t=4 cm(×50) chicken breast and P=0.1 MPa. Trace (C) shows the phase modulation of the US (ωmod =305 Hz, cyclic ratio=1/8).

Fig. 3.
Fig. 3.

Lateral 1D-scan (A) of a t=2 cm thick chicken breast containing a 2 mm ink inclusion. The absorbing contribution of the inclusion corresponds to curve (B).

Metrics