Abstract

The performance of the phase-shifted superstructured fiber Bragg grating (SSFBG) for optical code (OC) recognition was investigated with different reflectivity as well as input pulse width. The auto-correlation peak (PA) and the ratios of PA to the maximum wing level (P/W) and cross-correlation level (P/C) were used to quantitatively evaluate the OC recognition performance. There is a conflict between obtaining high PA and high P/W and P/C ratios in high reflectivity regime. The approach of applying apodization technique to improve the performance in high reflectivity regime is proposed. The comparative experimental investigations with 127-chip 160-Gchip/s SSFBG are carried out to confirm the effectiveness of the proposed approach. Error-free transmission with multiplexing of two active users has been successfully achieved by the apodized SSFBG at a data rate of 1.25 Gbit/s.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. P. R. Prucnal, M. A. Santoro, and T. R. Fan, �??Spread spectrum fiber-optic local area network using optical processing,�?? J. Lightwave Technol. 4, 547-554 (1986).
    [CrossRef]
  2. J. A. Salehi, �??Code division multiple-access techniques in optical fiber networks, Part I: fundamental principles,�?? IEEE Trans. Commun. 37, 824-842 (1989).
    [CrossRef]
  3. D. D. Sampson, G. J. Pendock, and R. A. Griffin, �??Photonic code-division multiple-access communications,�?? Fiber Integer. Opt. 16, 129-157 (1997).
    [CrossRef]
  4. K. Kitayama, �??Code division multiplexing lightwave networks based upon optical code conversion,�?? IEEE J. Selec. Areas Commun. 16, 1209-1319 (1998).
    [CrossRef]
  5. K. Kitayama and M. Murata, �??Versatile optical code-based MPLS for circuit, burst, and packet switchings,�?? J. Lightwave Technol. 21, 2753-2764 (2003
    [CrossRef]
  6. K. Kitayama and N. Wada, �??Photonic IP routing,�?? IEEE Photonic Technol. Lett. 11, 1689-1691 (1999)
    [CrossRef]
  7. X. Wang and K. Kitayama, �??Analysis of beat noise in coherent and incoherent time-spreading OCDMA,�?? J. Lightwave Technol. 22, 2226-2235 (2004).
    [CrossRef]
  8. G. E. Town, K. Chan, and G. Yoffe, �??Design and performance of high-speed optical pulse-code generators using optical fiber Bragg gratings,�?? IEEE J. Select. Quantum Electron. 5, 1325-1331 (1999).
    [CrossRef]
  9. H. Tsuda, H. Takenouchi, T. Ishii, K. Okamoto, T. Goh, K. Sato, A. Hirano, T. Kurokawa and C. Amano, �??Spectral encoding and decoding of 10 Gbit/s femtosecond pulses using high resolution arrayed-waveguide grating,�?? Electron. Lett., 35, 1186 �??1187 (1999).
    [CrossRef]
  10. Z. Wei, H. M. H. Shalaby, and H. Ghafouri-Shiraz, �??Modified Quadratic congruence codes for fiber Bragg-grating-based spectral-amplitude-coding optical CDMA systems,�?? J. Lightwave Technol. 19, 1274-1281 (2001).
    [CrossRef]
  11. S. Yegnanarayanan, A. S. Bhshan, and B. Jalali, "Fast wavelength-hopping time-spreading encoding/decoding for optical CDMA," IEEE Photon. Technol. Lett. 12, 573-575 (2000).
    [CrossRef]
  12. K. Yum, J. Shin, and N. Park, �??Wavelength-time spreading optical CDMA system using wavelength multiplexers and mirrors fiber delay lines,�?? IEEE, Photon. Technol. Lett. 12, 1278-1280 (2000).
    [CrossRef]
  13. H. Fathallah, L. A. Rusch, and S. LaRochelle, �??Passive optical fast frequency-hop CDMA communications system,�?? J. Lightwave Technol. 17, 397-405 (1999).
    [CrossRef]
  14. X. Wang and K. T. Chan, �??A sequentially self-seeded Fabry-Perot laser for two-dimensional encoding/decoding of optical pulses,�?? IEEE J. Quantum Electron. 39, 83-90 (2003).
    [CrossRef]
  15. N. Wada, H. Sotobayashi, and K. Kitayama, �??2.5 Gbit/s time-spread/wavelength-hop optical code division multiplexing using fibre Bragg grating with super continuum light source,�?? Electron. Lett. 36, 815-817 (2000).
    [CrossRef]
  16. R. A. Griffin, D. D. Sampson, and D. A. Jackson, �??Coherence coding for photonic code-division-multiple access networks,�?? J. Lightwave Technol. 13, 1826-1837 (1995).
    [CrossRef]
  17. M. E. Maric, �??Coherent optical CDMA networks,�?? J. Lightwave Technol. 11, 854-864 (1993).
    [CrossRef]
  18. N. Wada, and K. Kitayama, �??A 10 Gb/s optical code division multiplexing using 8-chip optical bipolar code and coherent detection,�?? J. Lightwave Technol. 17, 1758-1765 (1999).
    [CrossRef]
  19. J. A. Salehi, A. M. Weiner, and J. P. Heritage, �??Coherent ultrashort light pulse code-division multiple access communication systems,�?? J. Lightwave Technol. 8, 478-491 (1990).
    [CrossRef]
  20. C. C. Chang, H. P. Sardesai, and A. M. Weiner, �??Code-division multiple-access encoding and decoding of femtosecond optical pulses over a 2.5 Km fiber link,�?? IEEE, Photon. Technol. Lett. 10, 171-173 (1998).
    [CrossRef]
  21. A. Grunnet-Jepsen, A. E. Johnson, E. S. Maniloff, T. W. Mossberg, M. J. Munroe, and J. N. Sweetser, �??Fiber Bragg grating based spectral encoder/decoder for lightwave CDMA,�?? Electron. Lett. 35, 1096-1097 (1999).
    [CrossRef]
  22. P. C. Teh, P. Petropoulos, M. Ibsen and D. J. Richardson, �??A comparative study of the performance of seven- and 63-chip optical code-division multiple-access encoders and decoders based on superstructured fiber Bragg gratings,�?? J. Lightwave Technol. 9, 1352-1365 (2001).
  23. P. C. Teh, M. Ibsen, J. H. Lee, P. Petropoulos and D. J. Richardson, �??Demonstration of a four-channel WDM/OCDMA system using 255-chip 320-Gchip/s Quarternary phase coding grating,�?? IEEE Photonic Technol. Lett. 14, 227-229 (2002).
    [CrossRef]
  24. K. Matsushima, X. Wang, S. Kutsuzawa, A. Nishiki, S. Oshiba, N. Wada and K.I. Kitayama, �??Experimental demonstration of performance improvement of 127-Chip SSFBG en/decoder using apodization technique,�?? IEEE Photonic Technol. Lett. 16, 2192-2194 (2004).
    [CrossRef]
  25. X. Wang, K. Matsushima, A. Nishiki, N. Wada, F. Kubota and K. Kitayama, �??Experimental demonstration of 511-chip 640Gchip/s superstructured FBG for high performance optical code processing,�?? in European Cnference of Optical Communication (ECOC�??04) (Stockholm, Sweden, 2004), Tu1.3.7.
    [PubMed]
  26. T. W. Mossberg, �??Planar holographic optical processing devices,�?? Optics Lett. 26, 414-416 (2001).
    [CrossRef]
  27. P. Ebrahimi, M. Kargar, M. Hamer, A. E. Willner, K. Yu and O. Solgaard, �??A 10-µs-tuning MEMS-actuated Gires-Tournois filter for use as a tunable wavelength demultiplexer and a tunable OCDMA encoder/decoder,�?? Optical Fiber Communication Conference (OFC�??04) (Optical Society of America, Washington, D.C., 2004), ThQ2.
  28. T. Erdogan, �??Fiber grating spectra,�?? J. Lightwave Technol. 15, 1277-1294 (1997).
    [CrossRef]
  29. C. R. Giles, �??Lightwave applications of fiber Bragg grating,�?? J. Lightwave Technol. 15, 1391-1404 (1997).
    [CrossRef]
  30. B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, �??Long periodic superstructure Bragg gratings in optical fibers,�?? Electron. Lett. 30, 1620-1622 (1994).
    [CrossRef]
  31. X. Wang, A. Nishiki and K. Kitayama, �??Improvement of the coding performance of SSFBG en/decoder by apodization technique,�?? Microwave and Optical Techno. Lett. 43, 247-250 (2004).
    [CrossRef]
  32. E. H. Dinan and B. Jabbari, �??Spreading codes for direct sequence CDMA and wideband CDMA cellular networks,�?? IEEE Commun. Mag. 36, 48-54 (1998).
    [CrossRef]
  33. S. Kutsuzawa, S. Oshiba, A. Nishiki, S. Kobayashi, and H. Iwamura, �??Phase-coding OCDM using fiber-Bragg-grating with enlarged signal pulse width,�?? in OSA Trends in Optics and Photonics (TOPS) Vol.86, Optical Fiber Communications Conference, Tech. Dig. (Optical Society of America, Washington, DC, 2003), pp.136-137.
  34. D. Johlen, H. Renner, A. Ewald, and E. Brinkmeyer, �??Fiber Bragg grating Fabry-Perot measurement of the UV-induced index change,�?? in European Conference of Optical Communication (ECOC�??98) (Madrid, Spain, 1998), pp. 393-394.

ECOC 04 (1)

X. Wang, K. Matsushima, A. Nishiki, N. Wada, F. Kubota and K. Kitayama, �??Experimental demonstration of 511-chip 640Gchip/s superstructured FBG for high performance optical code processing,�?? in European Cnference of Optical Communication (ECOC�??04) (Stockholm, Sweden, 2004), Tu1.3.7.
[PubMed]

ECOC 1998 (1)

D. Johlen, H. Renner, A. Ewald, and E. Brinkmeyer, �??Fiber Bragg grating Fabry-Perot measurement of the UV-induced index change,�?? in European Conference of Optical Communication (ECOC�??98) (Madrid, Spain, 1998), pp. 393-394.

Electron. Lett. (4)

B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, �??Long periodic superstructure Bragg gratings in optical fibers,�?? Electron. Lett. 30, 1620-1622 (1994).
[CrossRef]

A. Grunnet-Jepsen, A. E. Johnson, E. S. Maniloff, T. W. Mossberg, M. J. Munroe, and J. N. Sweetser, �??Fiber Bragg grating based spectral encoder/decoder for lightwave CDMA,�?? Electron. Lett. 35, 1096-1097 (1999).
[CrossRef]

H. Tsuda, H. Takenouchi, T. Ishii, K. Okamoto, T. Goh, K. Sato, A. Hirano, T. Kurokawa and C. Amano, �??Spectral encoding and decoding of 10 Gbit/s femtosecond pulses using high resolution arrayed-waveguide grating,�?? Electron. Lett., 35, 1186 �??1187 (1999).
[CrossRef]

N. Wada, H. Sotobayashi, and K. Kitayama, �??2.5 Gbit/s time-spread/wavelength-hop optical code division multiplexing using fibre Bragg grating with super continuum light source,�?? Electron. Lett. 36, 815-817 (2000).
[CrossRef]

Fiber Integer. Opt. (1)

D. D. Sampson, G. J. Pendock, and R. A. Griffin, �??Photonic code-division multiple-access communications,�?? Fiber Integer. Opt. 16, 129-157 (1997).
[CrossRef]

IEEE Commun. Mag. (1)

E. H. Dinan and B. Jabbari, �??Spreading codes for direct sequence CDMA and wideband CDMA cellular networks,�?? IEEE Commun. Mag. 36, 48-54 (1998).
[CrossRef]

IEEE J. Quantum Electron. (1)

X. Wang and K. T. Chan, �??A sequentially self-seeded Fabry-Perot laser for two-dimensional encoding/decoding of optical pulses,�?? IEEE J. Quantum Electron. 39, 83-90 (2003).
[CrossRef]

IEEE J. Selec. Areas Commun. (1)

K. Kitayama, �??Code division multiplexing lightwave networks based upon optical code conversion,�?? IEEE J. Selec. Areas Commun. 16, 1209-1319 (1998).
[CrossRef]

IEEE J. Select. Quantum Electron. (1)

G. E. Town, K. Chan, and G. Yoffe, �??Design and performance of high-speed optical pulse-code generators using optical fiber Bragg gratings,�?? IEEE J. Select. Quantum Electron. 5, 1325-1331 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

S. Yegnanarayanan, A. S. Bhshan, and B. Jalali, "Fast wavelength-hopping time-spreading encoding/decoding for optical CDMA," IEEE Photon. Technol. Lett. 12, 573-575 (2000).
[CrossRef]

IEEE Photonic Technol. Lett. (3)

K. Kitayama and N. Wada, �??Photonic IP routing,�?? IEEE Photonic Technol. Lett. 11, 1689-1691 (1999)
[CrossRef]

P. C. Teh, M. Ibsen, J. H. Lee, P. Petropoulos and D. J. Richardson, �??Demonstration of a four-channel WDM/OCDMA system using 255-chip 320-Gchip/s Quarternary phase coding grating,�?? IEEE Photonic Technol. Lett. 14, 227-229 (2002).
[CrossRef]

K. Matsushima, X. Wang, S. Kutsuzawa, A. Nishiki, S. Oshiba, N. Wada and K.I. Kitayama, �??Experimental demonstration of performance improvement of 127-Chip SSFBG en/decoder using apodization technique,�?? IEEE Photonic Technol. Lett. 16, 2192-2194 (2004).
[CrossRef]

IEEE Trans. Commun. (1)

J. A. Salehi, �??Code division multiple-access techniques in optical fiber networks, Part I: fundamental principles,�?? IEEE Trans. Commun. 37, 824-842 (1989).
[CrossRef]

IEEE, Photon. Technol. Lett. (1)

C. C. Chang, H. P. Sardesai, and A. M. Weiner, �??Code-division multiple-access encoding and decoding of femtosecond optical pulses over a 2.5 Km fiber link,�?? IEEE, Photon. Technol. Lett. 10, 171-173 (1998).
[CrossRef]

IEEE. Photon. Technol. Lett. (1)

K. Yum, J. Shin, and N. Park, �??Wavelength-time spreading optical CDMA system using wavelength multiplexers and mirrors fiber delay lines,�?? IEEE, Photon. Technol. Lett. 12, 1278-1280 (2000).
[CrossRef]

J. Lightwave Technol. (12)

H. Fathallah, L. A. Rusch, and S. LaRochelle, �??Passive optical fast frequency-hop CDMA communications system,�?? J. Lightwave Technol. 17, 397-405 (1999).
[CrossRef]

N. Wada, and K. Kitayama, �??A 10 Gb/s optical code division multiplexing using 8-chip optical bipolar code and coherent detection,�?? J. Lightwave Technol. 17, 1758-1765 (1999).
[CrossRef]

Z. Wei, H. M. H. Shalaby, and H. Ghafouri-Shiraz, �??Modified Quadratic congruence codes for fiber Bragg-grating-based spectral-amplitude-coding optical CDMA systems,�?? J. Lightwave Technol. 19, 1274-1281 (2001).
[CrossRef]

K. Kitayama and M. Murata, �??Versatile optical code-based MPLS for circuit, burst, and packet switchings,�?? J. Lightwave Technol. 21, 2753-2764 (2003
[CrossRef]

X. Wang and K. Kitayama, �??Analysis of beat noise in coherent and incoherent time-spreading OCDMA,�?? J. Lightwave Technol. 22, 2226-2235 (2004).
[CrossRef]

R. A. Griffin, D. D. Sampson, and D. A. Jackson, �??Coherence coding for photonic code-division-multiple access networks,�?? J. Lightwave Technol. 13, 1826-1837 (1995).
[CrossRef]

M. E. Maric, �??Coherent optical CDMA networks,�?? J. Lightwave Technol. 11, 854-864 (1993).
[CrossRef]

J. A. Salehi, A. M. Weiner, and J. P. Heritage, �??Coherent ultrashort light pulse code-division multiple access communication systems,�?? J. Lightwave Technol. 8, 478-491 (1990).
[CrossRef]

P. C. Teh, P. Petropoulos, M. Ibsen and D. J. Richardson, �??A comparative study of the performance of seven- and 63-chip optical code-division multiple-access encoders and decoders based on superstructured fiber Bragg gratings,�?? J. Lightwave Technol. 9, 1352-1365 (2001).

P. R. Prucnal, M. A. Santoro, and T. R. Fan, �??Spread spectrum fiber-optic local area network using optical processing,�?? J. Lightwave Technol. 4, 547-554 (1986).
[CrossRef]

T. Erdogan, �??Fiber grating spectra,�?? J. Lightwave Technol. 15, 1277-1294 (1997).
[CrossRef]

C. R. Giles, �??Lightwave applications of fiber Bragg grating,�?? J. Lightwave Technol. 15, 1391-1404 (1997).
[CrossRef]

Microwave and Optical Techno. Lett. (1)

X. Wang, A. Nishiki and K. Kitayama, �??Improvement of the coding performance of SSFBG en/decoder by apodization technique,�?? Microwave and Optical Techno. Lett. 43, 247-250 (2004).
[CrossRef]

OFC 2003 (1)

S. Kutsuzawa, S. Oshiba, A. Nishiki, S. Kobayashi, and H. Iwamura, �??Phase-coding OCDM using fiber-Bragg-grating with enlarged signal pulse width,�?? in OSA Trends in Optics and Photonics (TOPS) Vol.86, Optical Fiber Communications Conference, Tech. Dig. (Optical Society of America, Washington, DC, 2003), pp.136-137.

OFC 2004 (1)

P. Ebrahimi, M. Kargar, M. Hamer, A. E. Willner, K. Yu and O. Solgaard, �??A 10-µs-tuning MEMS-actuated Gires-Tournois filter for use as a tunable wavelength demultiplexer and a tunable OCDMA encoder/decoder,�?? Optical Fiber Communication Conference (OFC�??04) (Optical Society of America, Washington, D.C., 2004), ThQ2.

Optics Lett. (1)

T. W. Mossberg, �??Planar holographic optical processing devices,�?? Optics Lett. 26, 414-416 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Classifications of OC generation/recognition techniques.

Fig. 2.
Fig. 2.

Superstructured FBG with phase shifts for OC generation/recognition (a) Configuration, working principle for BPSK OC generation (b) and recognition (c).

Fig. 3.
Fig. 3.

Spectrum and performance of SSFBG with different input pulse width (a) Spectrum; (b) P/W and P/C ratios vs. input pulse width.

Fig. 4.
Fig. 4.

Waveforms of the generated OC with different Δn0.

Fig. 5.
Fig. 5.

Performance of SSFBG en/decoder with different Δn0 (a) Power reflectivity, (b) P/W, P/C ratios and the auto-correlation peak value vs. Δn0..

Fig. 6.
Fig. 6.

Refractive index apodization profiles of SSFBG.

Fig. 7.
Fig. 7.

GC patterns and the measured (solid lines) and calculated (dashed lines) reflectivity spectrum (a) uniform LR samples, (b) uniform HR samples, and (c) AP samples.

Fig. 8.
Fig. 8.

Performance of the uniform LR SSFBG en/decoder (a) auto-correlation waveform (dots: measured by optical sampling oscilloscope; solid line: calculated) (b) peak intensity of the auto-/cross-correlation (AC/CX) vs. temperature drift of the SSFBG OC decoder.

Fig. 9.
Fig. 9.

Waveforms of (a) input pulse, and generated OC-A signals from (b) LR sample, (c) HR sample, and (d) AP sample.

Fig. 10.
Fig. 10.

The auto-/cross-correlations waveforms of (a) LR, (b) HR and (c) AP samples.

Fig. 11.
Fig. 11.

Experimental setup of the BER measuring experiment with 2 MUX users (MLFL: mode locked fiber laser; EAM: electro-absorption modulator; LPF: low pass filter; ATT: Attenuator).

Fig. 12.
Fig. 12.

Comparison of BER performance with and without MUX.

Tables (3)

Tables Icon

Table 1. Selection of OC subsets from 127-/511-chip Gold codes.

Tables Icon

Table 2. Performance of SSFBG in different Δn0 regime.

Tables Icon

Table 3. Peak reflectivity of the different SSFBG samples.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

C ( k ) = i = 1 N Chip a i b i + k { a = b , Auto correlation a b , Cross correlation

Metrics