Abstract

We demonstrate a compact tunable filter based on a novel microfluidic single beam Mach-Zehnder interferometer. The optical path difference occurs during propagation across a fluid-air interface (meniscus), the inherent mobility of which provides tunability. Optical losses are minimized by optimizing the meniscus shape through surface treatment. Optical spectra are compared to a 3D beam propagation method simulations and good agreement is found. Tunability, low insertion loss and strength of the resonance are well reproduced. The device performance displays a resonance depth of -28 dB and insertion loss maintained at -4 dB.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. D. Sadot and E. Boimovich,�??Tunable optical filters for dense WDM networks,�?? IEEE Commun. Mag. 36, 50-55 (1998).
    [CrossRef]
  2. M. G. Xu, H. Geiger and J. Dakin,�??Interrogation of fiber-optic interferometric sensors using acousto-optic tunable filter,�?? Electron. Lett. 31, 1487-1488 (1995).
    [CrossRef]
  3. P.Luginbuhl, �??Femtoliter injector for DNA mass spectrometry,�?? Sens. Actuators B 63, 167-177 (2000)
    [CrossRef]
  4. N. Nguyen and S. Wereley, Microfluidics (Artech House, Boston, MA, 2002).
  5. . Lee, H. Moon, J. Fowler, T. Schoellhammer, C. Kim,�??Electrowetting and electrowetting-on-dielectric for microscale liquid handling,�?? Sens. Actuators A. 95, 259-268 (2002).
    [CrossRef]
  6. H. Cao, J. O. Tegenfeldt, R. H. Austin, and S. Y. Chou,�??Gradient nanostructures for interfacing microfluidics and nanofluidics,�?? Appl. Phys. Lett. 81, 3058-3060 (2002).
    [CrossRef]
  7. Z. L. Tang, S. B. Hong, D. Djukic, V. Modi, A. C. West, J. Yardley, and R. M. Osgood,�??Electrokinetic flow control for composition modulation in a microchannel,�?? J. Micromech. Microeng. 12, 870-877 (2002).
    [CrossRef]
  8. J.E. Fouquet, S. Venkatesh, M. Troll, D. Chen, H.F. Wong, P.W. Barth, �??A compact, scalable cross-connect switch using total internal reflection due to thermally-generated bubbles,�?? Lasers and Electro-Optics Society Annual Meeting, 1998. IEEE. 2, 169-170 (1998).
  9. C. Kerbage and B.J. Eggleton, �??Microstructured optical fibers: Enabling integrated tunability for photonic devices,�?? Opt. Photon. News, September Issue, 38-43 (2002).
    [CrossRef]
  10. C. E. Kerbage and B. J. Eggleton, �??Tunable microfluidic optical fiber grating,�?? Appl. Phys. Lett. 82, 1332-1334 (2003).
    [CrossRef]
  11. P. Domachuk, H. C. Nguyen, B. J. Eggleton, M. Straub and M. Gu,�??Microfluidic tunable photonic band-gap device,�?? Appl. Phys. Lett. 84, 1838-1840 (2004).
    [CrossRef]
  12. P. Friis, K. Hoppe, O. Leistiko, K. B. Mogensen, J. Hubner, and J. P. Kutter, �??Monolithic integration of microfluidic channels and optical waveguides in silica on silicon,�?? Applied Optics 40, 6246-6251, (2001).
    [CrossRef]
  13. S. Camou, H. Fujita and T. Fujii,�??PDMS 2D optical lens integrated with microfluidic channels:principle and characterization,�?? Lab Chip 3, 40-45 (2003)
    [CrossRef]
  14. J. Hsieh, P. Mach, F. Cattaneo, S. Yang, T. Krupenkine, K. Baldwin, J.A. Rogers, �??Tunable microfluidic optical-fiber devices based on electrowetting pumps and plastic microchannels,�?? IEEE Photon. Technol. Lett. 15, 81-83 (2003).
    [CrossRef]
  15. V. Lien, Y. Berdichevsky, and Y-H. Lo, �??A prealigned process of integrating optical waveguides with microfluidic devices,�?? IEEE Photon. Technol. Lett. 16, 1525-1527 (2004).
    [CrossRef]
  16. S. Campopiano, R. Bernini, L. Zeni, P. Sarro,�??Microfluidic sensor based on integrated optical hollow waveguides,�?? Opt. Lett. 29, 1894-1896 (2004).
    [CrossRef] [PubMed]
  17. H. C. Nguyen, P. Domachuk, B. J. Eggleton, M. J. Steel, M. Straub, M. Gu, and M. Sumetsky, "A new slant on photonic crystal fibers," Opt. Express 12, 1528-1539 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1528.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1528</a>
    [CrossRef] [PubMed]
  18. R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, �??Numerical techniques for modeling guided-wave photonic devices,�?? IEEE J. Sel. Top. Quantum Electron. 6, 150 (2000).
    [CrossRef]
  19. R. Scarmozzino and R. Osgood, �??Comparison of finite difference and Fourier-transform solutions of the parabolic wave equation with emphasis on integrated-optics applications,�?? J. Opt. Soc. Am. A 8, 724 (1991).
    [CrossRef]

Appl. Phys. Lett. (3)

H. Cao, J. O. Tegenfeldt, R. H. Austin, and S. Y. Chou,�??Gradient nanostructures for interfacing microfluidics and nanofluidics,�?? Appl. Phys. Lett. 81, 3058-3060 (2002).
[CrossRef]

C. E. Kerbage and B. J. Eggleton, �??Tunable microfluidic optical fiber grating,�?? Appl. Phys. Lett. 82, 1332-1334 (2003).
[CrossRef]

P. Domachuk, H. C. Nguyen, B. J. Eggleton, M. Straub and M. Gu,�??Microfluidic tunable photonic band-gap device,�?? Appl. Phys. Lett. 84, 1838-1840 (2004).
[CrossRef]

Applied Optics (1)

P. Friis, K. Hoppe, O. Leistiko, K. B. Mogensen, J. Hubner, and J. P. Kutter, �??Monolithic integration of microfluidic channels and optical waveguides in silica on silicon,�?? Applied Optics 40, 6246-6251, (2001).
[CrossRef]

Electron. Lett. (1)

M. G. Xu, H. Geiger and J. Dakin,�??Interrogation of fiber-optic interferometric sensors using acousto-optic tunable filter,�?? Electron. Lett. 31, 1487-1488 (1995).
[CrossRef]

IEEE Commun. Mag. (1)

D. Sadot and E. Boimovich,�??Tunable optical filters for dense WDM networks,�?? IEEE Commun. Mag. 36, 50-55 (1998).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, �??Numerical techniques for modeling guided-wave photonic devices,�?? IEEE J. Sel. Top. Quantum Electron. 6, 150 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

J. Hsieh, P. Mach, F. Cattaneo, S. Yang, T. Krupenkine, K. Baldwin, J.A. Rogers, �??Tunable microfluidic optical-fiber devices based on electrowetting pumps and plastic microchannels,�?? IEEE Photon. Technol. Lett. 15, 81-83 (2003).
[CrossRef]

V. Lien, Y. Berdichevsky, and Y-H. Lo, �??A prealigned process of integrating optical waveguides with microfluidic devices,�?? IEEE Photon. Technol. Lett. 16, 1525-1527 (2004).
[CrossRef]

J. Micromech. Microeng. (1)

Z. L. Tang, S. B. Hong, D. Djukic, V. Modi, A. C. West, J. Yardley, and R. M. Osgood,�??Electrokinetic flow control for composition modulation in a microchannel,�?? J. Micromech. Microeng. 12, 870-877 (2002).
[CrossRef]

J. Opt. Soc. Am. A (1)

Lab Chip (1)

S. Camou, H. Fujita and T. Fujii,�??PDMS 2D optical lens integrated with microfluidic channels:principle and characterization,�?? Lab Chip 3, 40-45 (2003)
[CrossRef]

Lasers and Electro-Optics Society Annual (1)

J.E. Fouquet, S. Venkatesh, M. Troll, D. Chen, H.F. Wong, P.W. Barth, �??A compact, scalable cross-connect switch using total internal reflection due to thermally-generated bubbles,�?? Lasers and Electro-Optics Society Annual Meeting, 1998. IEEE. 2, 169-170 (1998).

Opt. Express (1)

Opt. Lett. (1)

Opt. Photon. News, September Issue, (1)

C. Kerbage and B.J. Eggleton, �??Microstructured optical fibers: Enabling integrated tunability for photonic devices,�?? Opt. Photon. News, September Issue, 38-43 (2002).
[CrossRef]

Sens. Actuators A. (1)

. Lee, H. Moon, J. Fowler, T. Schoellhammer, C. Kim,�??Electrowetting and electrowetting-on-dielectric for microscale liquid handling,�?? Sens. Actuators A. 95, 259-268 (2002).
[CrossRef]

Sens. Actuators B (1)

P.Luginbuhl, �??Femtoliter injector for DNA mass spectrometry,�?? Sens. Actuators B 63, 167-177 (2000)
[CrossRef]

Other (1)

N. Nguyen and S. Wereley, Microfluidics (Artech House, Boston, MA, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) Schematic of a Mach-Zehnder interferometer. (b) Compact microfluidic single beam mach-Zehnder: the incident beam (left) is split by the refractive index interface, after which the beams interfere, creating a resonant response

Fig. 2.
Fig. 2.

Spectral response for the tunable microfludic interferometer using analytic expressions. The different lines give the response for different interface locations as depicted in the schematic insets shown right. The inset graph summarizes the resonance depth at 1.31 μm as a function of meniscus detuning.

Fig. 3.
Fig. 3.

Side (left) and top (right) view of the experimental setup. The square capillary is sandwiched between two SMFs. Index matching fluid around the device ensures no air gaps.

Fig. 4.
Fig. 4.

Comparison between the untreated (left) and the treated (right) capillary. In the treated case, the meniscus is virtually flat and perpendicular to the capillary surface.

Fig. 5.
Fig. 5.

Experimental (solid line) spectral response of the device as compared to 3D BPM numerical simulation (dashed line) when the meniscus is well-centered

Fig. 6.
Fig. 6.

Field intensity plots from a 3D BPM simulation geometry used to model the device. In this example the beam is launched at the resonance wavelength, and a meniscus displacement of a=-4 is used. Left is a side view and right a top view, similar to Fig 3.

Fig. 7.
Fig. 7.

A series of experimental (left), simulation spectra (right) as the water interface moves across the incident beam.

Fig. 8.
Fig. 8.

Optical response of the device as a function of meniscus detuning regarding the beam center from experiment (solid line) and 3D simulation (dashed line).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I = I 1 + I 2 + 2 cos ( δ ) I 1 I 2 ,
I = I 0 ( A 0 + 2 A 1 ( a ) [ A 0 A 1 ( a ) ] cos δ ) ,

Metrics