Abstract

Microstructured optical fibers consisting of a low refractive index core surrounded by high index inclusions guide by anti-resonant reflection. Previous experiments considered only wavelengths that are short compared to microstructure dimensions. We experimentally investigate a microstructured fiber with high index inclusions and demonstrate anti-resonant guidance at long wavelengths. We also numerically simulate these structures, including coupling loss, propagation loss, and structural disorder, and compare with the experimental results.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. P.S.J. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
    [CrossRef] [PubMed]
  2. R.F. Cregan, B.J. Mangan, J.C. Knight, T.A. Birks, P.S.J. Russell, P.J. Roberts and D.C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999).
    [CrossRef] [PubMed]
  3. C.M. Smith, N. Venkataraman, M.T. Gallagher, D. Muller, J.A. West, N.F. Borelli, and K.W. Koch, "Low-loss hollow-core silica/air photonic bandgap fibre" Nature 424, 657-659 (2003).
    [CrossRef] [PubMed]
  4. A. Bjarklev, J. Broeng, and A.S. Bjarklev, Photonic Crystal Fibers (Kluwer Academic Publishers, Boston, 2000).
  5. R.T. Bise, R.S. Windeler, K.S. Kranz, C. Kerbage, B.J. Eggleton and D.J. Trevor, "Tunable photonic band gap fiber," in Optical Fiber Communications Conference, Postconference Edition, vol. 70 of OSA Trends in Optic and Photonics Series Technical Digest (Optical Society of America, Washington D.C. 2002) pp. 466-468.
  6. T.T. Larsen, A. Bjarklev and D.S. Hermann, "Optical devices based on liquid crystal photonics bandgap fibers," Opt. Express 11, 2589-2596 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2589">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2589</a>
    [CrossRef] [PubMed]
  7. N.M. Litchinitser, S.C. Dunn, B. Usner, B.J. Eggleton, T.P. White, R.C. McPhedran and C.M. de Sterke, "Resonances in microstructured optical waveguides," Opt. Express 11, 1243-1251 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-10-1243">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-10-1243</a>
    [CrossRef] [PubMed]
  8. M.A. Duguay, Y. Kokubun, T.L. Koch and L. Pfeiffer, "Antiresonant Reflecting Optical Waveguides in SiO2-Si Multilayer Structures," Appl. Phys. Lett. 49, 13-15 (1986).
    [CrossRef]
  9. T. Baba and Y. Kokubun, "Dispersion and Radiation Loss Characteristics of Antiresonant Reflecting Optical Waveguides - Numerical Results and Analytical Expressions," IEEE J. Quantum Electron. 28, 1689-1700 (1992).
    [CrossRef]
  10. T.P. White, R.C. McPhedran, C.M. de Sterke, N.M. Litchinitser and B.J. Eggleton, "Resonance and scattering in microstructured optical fibers," Opt. Lett. 27, 1977-1979 (2002).
    [CrossRef]
  11. A.K. Abeeluck, N. M. Litchinitser, C. Headley and B.J. Eggleton, "Analysis of spectral characteristics of photonic bandgap waveguides," Opt. Express 10, 1320-1333 (2002), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-23-1320">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-23-1320</a>
    [CrossRef] [PubMed]
  12. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon Press Ltd., Oxford, 1980), Sec. 7.6
  13. A.C. Lind and J.M. Greenberg, "Electromagnetic Scattering by Obliquely Oriented Cylinders," J. Appl. Phys. 37, 3195-3203 (1966).
    [CrossRef]
  14. T.P. White, B.T. Kuhlmey, R.C. McPhedran, D. Maystre, G. Renversez, C.M. de Sterke and L.C. Botten, "Multipole method for microstructured optical fibers. I. Formulation," J. Opt. Soc. Am. B 19, 2322-2330 (2002).
    [CrossRef]
  15. B.T. Kuhlmey, T.P. White, D. Maystre, G. Renversez, L.C. Botten, C.M. de Sterke, and R.C. McPhedran, "Multipole method for microstructured optical fibers. II. Implementation and results," J. Opt. Soc. Am. B 19, 2331-2340 (2002).
    [CrossRef]
  16. Cargille Laboratories, Inc., Cedar Grove, NJ, USA, Data sheets: Refractive Index Liquid Series A, nD = 1.60, Refractive Index Liquid Series M, nD = 1.78
  17. J. Laegsgaard, "Gap formation and guided modes in photonic bandgap fibres with high-index rods," J. Opt. A 6, 798-804 (2004).
    [CrossRef]
  18. R. Scarmozzino, A. Gopinath, R. Pregla and S. Helfert, "Numerical techniques for modeling guided-wave photonic devices," IEEE J. Sel. Top. Quantum Electron. 6, 150-162 (2000).
    [CrossRef]

Appl. Phys. Lett. (1)

M.A. Duguay, Y. Kokubun, T.L. Koch and L. Pfeiffer, "Antiresonant Reflecting Optical Waveguides in SiO2-Si Multilayer Structures," Appl. Phys. Lett. 49, 13-15 (1986).
[CrossRef]

IEEE J. Quantum Electron. (1)

T. Baba and Y. Kokubun, "Dispersion and Radiation Loss Characteristics of Antiresonant Reflecting Optical Waveguides - Numerical Results and Analytical Expressions," IEEE J. Quantum Electron. 28, 1689-1700 (1992).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

R. Scarmozzino, A. Gopinath, R. Pregla and S. Helfert, "Numerical techniques for modeling guided-wave photonic devices," IEEE J. Sel. Top. Quantum Electron. 6, 150-162 (2000).
[CrossRef]

J. Appl. Phys. (1)

A.C. Lind and J.M. Greenberg, "Electromagnetic Scattering by Obliquely Oriented Cylinders," J. Appl. Phys. 37, 3195-3203 (1966).
[CrossRef]

J. Opt. A (1)

J. Laegsgaard, "Gap formation and guided modes in photonic bandgap fibres with high-index rods," J. Opt. A 6, 798-804 (2004).
[CrossRef]

J. Opt. Soc. Am. B (2)

Nature (1)

C.M. Smith, N. Venkataraman, M.T. Gallagher, D. Muller, J.A. West, N.F. Borelli, and K.W. Koch, "Low-loss hollow-core silica/air photonic bandgap fibre" Nature 424, 657-659 (2003).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

OSA TOPS Series (1)

R.T. Bise, R.S. Windeler, K.S. Kranz, C. Kerbage, B.J. Eggleton and D.J. Trevor, "Tunable photonic band gap fiber," in Optical Fiber Communications Conference, Postconference Edition, vol. 70 of OSA Trends in Optic and Photonics Series Technical Digest (Optical Society of America, Washington D.C. 2002) pp. 466-468.

Science (2)

P.S.J. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
[CrossRef] [PubMed]

R.F. Cregan, B.J. Mangan, J.C. Knight, T.A. Birks, P.S.J. Russell, P.J. Roberts and D.C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

Other (3)

A. Bjarklev, J. Broeng, and A.S. Bjarklev, Photonic Crystal Fibers (Kluwer Academic Publishers, Boston, 2000).

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon Press Ltd., Oxford, 1980), Sec. 7.6

Cargille Laboratories, Inc., Cedar Grove, NJ, USA, Data sheets: Refractive Index Liquid Series A, nD = 1.60, Refractive Index Liquid Series M, nD = 1.78

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

(a) Schematic of ARROW-PCF geometry and (b) schematic of 2-D ARROW geometry with anti-resonant guided mode profile.

Fig. 2.
Fig. 2.

Effective index neff versus λ for anti-guided modes of ARROW-PCF (red) and modes of a single high index cylinder (blue). Black line corresponds to nsilica. Regions of high loss for ARROW modes correspond to modal cutoffs of the high index cylinder modes. Resonances predicted by Eq. (1) are indicated by the vertical dashed lines.

Fig. 3.
Fig. 3.

(a) SEM micrograph of fiber used, and (b) block diagram of experiment

Fig. 4.
Fig. 4.

Optical microscope image showing axial variations in the relative position and lengths of the fluid plugs

Fig. 5.
Fig. 5.

Measured transmission spectra for (a) nD=1.60 and (b) nD=1.78. Resonances and anti-resonances predicted by Eq. (1) are indicated by dashed and dotted lines, respectively. In (a), the m=2 anti-resonance lies just to the right of the graph at λ=592 nm (506.75 THz); in (b) the m=1 anti-resonance lies just to the left of the graph at λ=1735 nm (172.91 THz). Results from multipole and beam propagation simulations (see Sec. 4) are also shown.

Fig. 6.
Fig. 6.

Transmission spectra of beam propagation simulations for 10 µm (red) and 500 µm (black) of propagation for (a) nD=1.60 and (b) nD=1.78.

Fig. 7.
Fig. 7.

Contour plots of P(z) (dB scale) versus wavelength and distance in a 10 ring ARROW-PCF with (a) nD=1.60 and (b) nD=1.78. Black regions indicate P(z) <-75 dB

Fig. 8.
Fig. 8.

Infrared image of light coupled out of the core for (a) an unfilled fiber and (b) a fluid filled fiber with nD=1.78.

Fig. 9.
Fig. 9.

Contour plots of P(z) (dB scale) as a function of wavelength and distance in an axially varying four ring ARROW-PCF with (a) nD=1.60, uniform fluid length=0.36 mm and (b) nD=1.78, uniform fluid length=1.46 mm. Black regions indicate P(z) <-75 dB

Fig. 10.
Fig. 10.

Experimental transmission spectra and beam propagation simulations assuming transverse symmetry or using an SEM-based index profile for (a) nD=1.6 and (b) nD=1.78.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λ m = 2 d ( n high 2 n low 2 ) m + σ ,
P ( z ) = E launch ( x , y ) E * ( x , y , z ) dxdy ( E launch ( x , y ) E launch * ( x , y ) dxdy ) 1 2 ( E ( x , y , z ) E * ( x , y , z ) dxdy ) 1 2 ,

Metrics