J. Laegsgaard, “Gap formation and guided modes in photonic bandgap fibres with high-index rods,” J. Opt. A 6, 798–804 (2004).
[Crossref]
P.S.J. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[Crossref]
[PubMed]
C.M. Smith, N. Venkataraman, M.T. Gallagher, D. Muller, J.A. West, N.F. Borelli, and K.W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre” Nature 424, 657–659 (2003).
[Crossref]
[PubMed]
N.M. Litchinitser, S.C. Dunn, B. Usner, B.J. Eggleton, T.P. White, R.C. McPhedran, and C.M. de Sterke, “Resonances in microstructured optical waveguides,” Opt. Express 11, 1243–1251 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-10-1243
[Crossref]
[PubMed]
T.T. Larsen, A. Bjarklev, and D.S. Hermann, “Optical devices based on liquid crystal photonics bandgap fibers,” Opt. Express 11, 2589–2596 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2589
[Crossref]
[PubMed]
T.P. White, B.T. Kuhlmey, R.C. McPhedran, D. Maystre, G. Renversez, C.M. de Sterke, and L.C. Botten, “Multipole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B 19, 2322–2330 (2002).
[Crossref]
B.T. Kuhlmey, T.P. White, D. Maystre, G. Renversez, L.C. Botten, C.M. de Sterke, and R.C. McPhedran, “Multipole method for microstructured optical fibers. II. Implementation and results,” J. Opt. Soc. Am. B 19, 2331–2340 (2002).
[Crossref]
T.P. White, R.C. McPhedran, C.M. de Sterke, N.M. Litchinitser, and B.J. Eggleton, “Resonance and scattering in microstructured optical fibers,” Opt. Lett. 27, 1977–1979 (2002).
[Crossref]
A.K. Abeeluck, N. M. Litchinitser, C. Headley, and B.J. Eggleton, “Analysis of spectral characteristics of photonic bandgap waveguides,” Opt. Express 10, 1320–1333 (2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-23-1320
[Crossref]
[PubMed]
R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, “Numerical techniques for modeling guided-wave photonic devices,” IEEE J. Sel. Top. Quantum Electron. 6, 150–162 (2000).
[Crossref]
R.F. Cregan, B.J. Mangan, J.C. Knight, T.A. Birks, P.S.J. Russell, P.J. Roberts, and D.C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref]
[PubMed]
T. Baba and Y. Kokubun, “Dispersion and Radiation Loss Characteristics of Antiresonant Reflecting Optical Waveguides - Numerical Results and Analytical Expressions,” IEEE J. Quantum Electron. 28, 1689–1700 (1992).
[Crossref]
M.A. Duguay, Y. Kokubun, T.L. Koch, and L. Pfeiffer, “Antiresonant Reflecting Optical Waveguides in SiO2-Si Multilayer Structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[Crossref]
A.C. Lind and J.M. Greenberg, “Electromagnetic Scattering by Obliquely Oriented Cylinders,” J. Appl. Phys. 37, 3195–3203 (1966).
[Crossref]
R.F. Cregan, B.J. Mangan, J.C. Knight, T.A. Birks, P.S.J. Russell, P.J. Roberts, and D.C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref]
[PubMed]
T. Baba and Y. Kokubun, “Dispersion and Radiation Loss Characteristics of Antiresonant Reflecting Optical Waveguides - Numerical Results and Analytical Expressions,” IEEE J. Quantum Electron. 28, 1689–1700 (1992).
[Crossref]
R.F. Cregan, B.J. Mangan, J.C. Knight, T.A. Birks, P.S.J. Russell, P.J. Roberts, and D.C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref]
[PubMed]
R.T. Bise, R.S. Windeler, K.S. Kranz, C. Kerbage, B.J. Eggleton, and D.J. Trevor, “Tunable photonic band gap fiber,” in Optical Fiber Communications Conference, Postconference Edition, vol. 70 of OSA Trends in Optics and Photonics Series Technical Digest (Optical Society of America, Washington D.C.2002) pp. 4f66–468.
T.T. Larsen, A. Bjarklev, and D.S. Hermann, “Optical devices based on liquid crystal photonics bandgap fibers,” Opt. Express 11, 2589–2596 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2589
[Crossref]
[PubMed]
A. Bjarklev, J. Broeng, and A.S. Bjarklev, Photonic Crystal Fibers (Kluwer Academic Publishers, Boston, 2000).
A. Bjarklev, J. Broeng, and A.S. Bjarklev, Photonic Crystal Fibers (Kluwer Academic Publishers, Boston, 2000).
C.M. Smith, N. Venkataraman, M.T. Gallagher, D. Muller, J.A. West, N.F. Borelli, and K.W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre” Nature 424, 657–659 (2003).
[Crossref]
[PubMed]
M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon Press Ltd., Oxford, 1980), Sec. 7.6
T.P. White, B.T. Kuhlmey, R.C. McPhedran, D. Maystre, G. Renversez, C.M. de Sterke, and L.C. Botten, “Multipole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B 19, 2322–2330 (2002).
[Crossref]
B.T. Kuhlmey, T.P. White, D. Maystre, G. Renversez, L.C. Botten, C.M. de Sterke, and R.C. McPhedran, “Multipole method for microstructured optical fibers. II. Implementation and results,” J. Opt. Soc. Am. B 19, 2331–2340 (2002).
[Crossref]
A. Bjarklev, J. Broeng, and A.S. Bjarklev, Photonic Crystal Fibers (Kluwer Academic Publishers, Boston, 2000).
R.F. Cregan, B.J. Mangan, J.C. Knight, T.A. Birks, P.S.J. Russell, P.J. Roberts, and D.C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref]
[PubMed]
N.M. Litchinitser, S.C. Dunn, B. Usner, B.J. Eggleton, T.P. White, R.C. McPhedran, and C.M. de Sterke, “Resonances in microstructured optical waveguides,” Opt. Express 11, 1243–1251 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-10-1243
[Crossref]
[PubMed]
T.P. White, R.C. McPhedran, C.M. de Sterke, N.M. Litchinitser, and B.J. Eggleton, “Resonance and scattering in microstructured optical fibers,” Opt. Lett. 27, 1977–1979 (2002).
[Crossref]
B.T. Kuhlmey, T.P. White, D. Maystre, G. Renversez, L.C. Botten, C.M. de Sterke, and R.C. McPhedran, “Multipole method for microstructured optical fibers. II. Implementation and results,” J. Opt. Soc. Am. B 19, 2331–2340 (2002).
[Crossref]
T.P. White, B.T. Kuhlmey, R.C. McPhedran, D. Maystre, G. Renversez, C.M. de Sterke, and L.C. Botten, “Multipole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B 19, 2322–2330 (2002).
[Crossref]
M.A. Duguay, Y. Kokubun, T.L. Koch, and L. Pfeiffer, “Antiresonant Reflecting Optical Waveguides in SiO2-Si Multilayer Structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[Crossref]
N.M. Litchinitser, S.C. Dunn, B. Usner, B.J. Eggleton, T.P. White, R.C. McPhedran, and C.M. de Sterke, “Resonances in microstructured optical waveguides,” Opt. Express 11, 1243–1251 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-10-1243
[Crossref]
[PubMed]
N.M. Litchinitser, S.C. Dunn, B. Usner, B.J. Eggleton, T.P. White, R.C. McPhedran, and C.M. de Sterke, “Resonances in microstructured optical waveguides,” Opt. Express 11, 1243–1251 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-10-1243
[Crossref]
[PubMed]
A.K. Abeeluck, N. M. Litchinitser, C. Headley, and B.J. Eggleton, “Analysis of spectral characteristics of photonic bandgap waveguides,” Opt. Express 10, 1320–1333 (2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-23-1320
[Crossref]
[PubMed]
T.P. White, R.C. McPhedran, C.M. de Sterke, N.M. Litchinitser, and B.J. Eggleton, “Resonance and scattering in microstructured optical fibers,” Opt. Lett. 27, 1977–1979 (2002).
[Crossref]
R.T. Bise, R.S. Windeler, K.S. Kranz, C. Kerbage, B.J. Eggleton, and D.J. Trevor, “Tunable photonic band gap fiber,” in Optical Fiber Communications Conference, Postconference Edition, vol. 70 of OSA Trends in Optics and Photonics Series Technical Digest (Optical Society of America, Washington D.C.2002) pp. 4f66–468.
C.M. Smith, N. Venkataraman, M.T. Gallagher, D. Muller, J.A. West, N.F. Borelli, and K.W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre” Nature 424, 657–659 (2003).
[Crossref]
[PubMed]
R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, “Numerical techniques for modeling guided-wave photonic devices,” IEEE J. Sel. Top. Quantum Electron. 6, 150–162 (2000).
[Crossref]
A.C. Lind and J.M. Greenberg, “Electromagnetic Scattering by Obliquely Oriented Cylinders,” J. Appl. Phys. 37, 3195–3203 (1966).
[Crossref]
R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, “Numerical techniques for modeling guided-wave photonic devices,” IEEE J. Sel. Top. Quantum Electron. 6, 150–162 (2000).
[Crossref]
R.T. Bise, R.S. Windeler, K.S. Kranz, C. Kerbage, B.J. Eggleton, and D.J. Trevor, “Tunable photonic band gap fiber,” in Optical Fiber Communications Conference, Postconference Edition, vol. 70 of OSA Trends in Optics and Photonics Series Technical Digest (Optical Society of America, Washington D.C.2002) pp. 4f66–468.
R.F. Cregan, B.J. Mangan, J.C. Knight, T.A. Birks, P.S.J. Russell, P.J. Roberts, and D.C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref]
[PubMed]
C.M. Smith, N. Venkataraman, M.T. Gallagher, D. Muller, J.A. West, N.F. Borelli, and K.W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre” Nature 424, 657–659 (2003).
[Crossref]
[PubMed]
M.A. Duguay, Y. Kokubun, T.L. Koch, and L. Pfeiffer, “Antiresonant Reflecting Optical Waveguides in SiO2-Si Multilayer Structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[Crossref]
T. Baba and Y. Kokubun, “Dispersion and Radiation Loss Characteristics of Antiresonant Reflecting Optical Waveguides - Numerical Results and Analytical Expressions,” IEEE J. Quantum Electron. 28, 1689–1700 (1992).
[Crossref]
M.A. Duguay, Y. Kokubun, T.L. Koch, and L. Pfeiffer, “Antiresonant Reflecting Optical Waveguides in SiO2-Si Multilayer Structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[Crossref]
R.T. Bise, R.S. Windeler, K.S. Kranz, C. Kerbage, B.J. Eggleton, and D.J. Trevor, “Tunable photonic band gap fiber,” in Optical Fiber Communications Conference, Postconference Edition, vol. 70 of OSA Trends in Optics and Photonics Series Technical Digest (Optical Society of America, Washington D.C.2002) pp. 4f66–468.
B.T. Kuhlmey, T.P. White, D. Maystre, G. Renversez, L.C. Botten, C.M. de Sterke, and R.C. McPhedran, “Multipole method for microstructured optical fibers. II. Implementation and results,” J. Opt. Soc. Am. B 19, 2331–2340 (2002).
[Crossref]
T.P. White, B.T. Kuhlmey, R.C. McPhedran, D. Maystre, G. Renversez, C.M. de Sterke, and L.C. Botten, “Multipole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B 19, 2322–2330 (2002).
[Crossref]
J. Laegsgaard, “Gap formation and guided modes in photonic bandgap fibres with high-index rods,” J. Opt. A 6, 798–804 (2004).
[Crossref]
A.C. Lind and J.M. Greenberg, “Electromagnetic Scattering by Obliquely Oriented Cylinders,” J. Appl. Phys. 37, 3195–3203 (1966).
[Crossref]
N.M. Litchinitser, S.C. Dunn, B. Usner, B.J. Eggleton, T.P. White, R.C. McPhedran, and C.M. de Sterke, “Resonances in microstructured optical waveguides,” Opt. Express 11, 1243–1251 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-10-1243
[Crossref]
[PubMed]
T.P. White, R.C. McPhedran, C.M. de Sterke, N.M. Litchinitser, and B.J. Eggleton, “Resonance and scattering in microstructured optical fibers,” Opt. Lett. 27, 1977–1979 (2002).
[Crossref]
R.F. Cregan, B.J. Mangan, J.C. Knight, T.A. Birks, P.S.J. Russell, P.J. Roberts, and D.C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref]
[PubMed]
T.P. White, B.T. Kuhlmey, R.C. McPhedran, D. Maystre, G. Renversez, C.M. de Sterke, and L.C. Botten, “Multipole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B 19, 2322–2330 (2002).
[Crossref]
B.T. Kuhlmey, T.P. White, D. Maystre, G. Renversez, L.C. Botten, C.M. de Sterke, and R.C. McPhedran, “Multipole method for microstructured optical fibers. II. Implementation and results,” J. Opt. Soc. Am. B 19, 2331–2340 (2002).
[Crossref]
N.M. Litchinitser, S.C. Dunn, B. Usner, B.J. Eggleton, T.P. White, R.C. McPhedran, and C.M. de Sterke, “Resonances in microstructured optical waveguides,” Opt. Express 11, 1243–1251 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-10-1243
[Crossref]
[PubMed]
T.P. White, R.C. McPhedran, C.M. de Sterke, N.M. Litchinitser, and B.J. Eggleton, “Resonance and scattering in microstructured optical fibers,” Opt. Lett. 27, 1977–1979 (2002).
[Crossref]
B.T. Kuhlmey, T.P. White, D. Maystre, G. Renversez, L.C. Botten, C.M. de Sterke, and R.C. McPhedran, “Multipole method for microstructured optical fibers. II. Implementation and results,” J. Opt. Soc. Am. B 19, 2331–2340 (2002).
[Crossref]
T.P. White, B.T. Kuhlmey, R.C. McPhedran, D. Maystre, G. Renversez, C.M. de Sterke, and L.C. Botten, “Multipole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B 19, 2322–2330 (2002).
[Crossref]
C.M. Smith, N. Venkataraman, M.T. Gallagher, D. Muller, J.A. West, N.F. Borelli, and K.W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre” Nature 424, 657–659 (2003).
[Crossref]
[PubMed]
M.A. Duguay, Y. Kokubun, T.L. Koch, and L. Pfeiffer, “Antiresonant Reflecting Optical Waveguides in SiO2-Si Multilayer Structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[Crossref]
R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, “Numerical techniques for modeling guided-wave photonic devices,” IEEE J. Sel. Top. Quantum Electron. 6, 150–162 (2000).
[Crossref]
T.P. White, B.T. Kuhlmey, R.C. McPhedran, D. Maystre, G. Renversez, C.M. de Sterke, and L.C. Botten, “Multipole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B 19, 2322–2330 (2002).
[Crossref]
B.T. Kuhlmey, T.P. White, D. Maystre, G. Renversez, L.C. Botten, C.M. de Sterke, and R.C. McPhedran, “Multipole method for microstructured optical fibers. II. Implementation and results,” J. Opt. Soc. Am. B 19, 2331–2340 (2002).
[Crossref]
R.F. Cregan, B.J. Mangan, J.C. Knight, T.A. Birks, P.S.J. Russell, P.J. Roberts, and D.C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref]
[PubMed]
P.S.J. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[Crossref]
[PubMed]
R.F. Cregan, B.J. Mangan, J.C. Knight, T.A. Birks, P.S.J. Russell, P.J. Roberts, and D.C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref]
[PubMed]
R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, “Numerical techniques for modeling guided-wave photonic devices,” IEEE J. Sel. Top. Quantum Electron. 6, 150–162 (2000).
[Crossref]
C.M. Smith, N. Venkataraman, M.T. Gallagher, D. Muller, J.A. West, N.F. Borelli, and K.W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre” Nature 424, 657–659 (2003).
[Crossref]
[PubMed]
R.T. Bise, R.S. Windeler, K.S. Kranz, C. Kerbage, B.J. Eggleton, and D.J. Trevor, “Tunable photonic band gap fiber,” in Optical Fiber Communications Conference, Postconference Edition, vol. 70 of OSA Trends in Optics and Photonics Series Technical Digest (Optical Society of America, Washington D.C.2002) pp. 4f66–468.
N.M. Litchinitser, S.C. Dunn, B. Usner, B.J. Eggleton, T.P. White, R.C. McPhedran, and C.M. de Sterke, “Resonances in microstructured optical waveguides,” Opt. Express 11, 1243–1251 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-10-1243
[Crossref]
[PubMed]
C.M. Smith, N. Venkataraman, M.T. Gallagher, D. Muller, J.A. West, N.F. Borelli, and K.W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre” Nature 424, 657–659 (2003).
[Crossref]
[PubMed]
C.M. Smith, N. Venkataraman, M.T. Gallagher, D. Muller, J.A. West, N.F. Borelli, and K.W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre” Nature 424, 657–659 (2003).
[Crossref]
[PubMed]
N.M. Litchinitser, S.C. Dunn, B. Usner, B.J. Eggleton, T.P. White, R.C. McPhedran, and C.M. de Sterke, “Resonances in microstructured optical waveguides,” Opt. Express 11, 1243–1251 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-10-1243
[Crossref]
[PubMed]
T.P. White, R.C. McPhedran, C.M. de Sterke, N.M. Litchinitser, and B.J. Eggleton, “Resonance and scattering in microstructured optical fibers,” Opt. Lett. 27, 1977–1979 (2002).
[Crossref]
B.T. Kuhlmey, T.P. White, D. Maystre, G. Renversez, L.C. Botten, C.M. de Sterke, and R.C. McPhedran, “Multipole method for microstructured optical fibers. II. Implementation and results,” J. Opt. Soc. Am. B 19, 2331–2340 (2002).
[Crossref]
T.P. White, B.T. Kuhlmey, R.C. McPhedran, D. Maystre, G. Renversez, C.M. de Sterke, and L.C. Botten, “Multipole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B 19, 2322–2330 (2002).
[Crossref]
R.T. Bise, R.S. Windeler, K.S. Kranz, C. Kerbage, B.J. Eggleton, and D.J. Trevor, “Tunable photonic band gap fiber,” in Optical Fiber Communications Conference, Postconference Edition, vol. 70 of OSA Trends in Optics and Photonics Series Technical Digest (Optical Society of America, Washington D.C.2002) pp. 4f66–468.
M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon Press Ltd., Oxford, 1980), Sec. 7.6
M.A. Duguay, Y. Kokubun, T.L. Koch, and L. Pfeiffer, “Antiresonant Reflecting Optical Waveguides in SiO2-Si Multilayer Structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[Crossref]
T. Baba and Y. Kokubun, “Dispersion and Radiation Loss Characteristics of Antiresonant Reflecting Optical Waveguides - Numerical Results and Analytical Expressions,” IEEE J. Quantum Electron. 28, 1689–1700 (1992).
[Crossref]
R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, “Numerical techniques for modeling guided-wave photonic devices,” IEEE J. Sel. Top. Quantum Electron. 6, 150–162 (2000).
[Crossref]
A.C. Lind and J.M. Greenberg, “Electromagnetic Scattering by Obliquely Oriented Cylinders,” J. Appl. Phys. 37, 3195–3203 (1966).
[Crossref]
J. Laegsgaard, “Gap formation and guided modes in photonic bandgap fibres with high-index rods,” J. Opt. A 6, 798–804 (2004).
[Crossref]
T.P. White, B.T. Kuhlmey, R.C. McPhedran, D. Maystre, G. Renversez, C.M. de Sterke, and L.C. Botten, “Multipole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B 19, 2322–2330 (2002).
[Crossref]
B.T. Kuhlmey, T.P. White, D. Maystre, G. Renversez, L.C. Botten, C.M. de Sterke, and R.C. McPhedran, “Multipole method for microstructured optical fibers. II. Implementation and results,” J. Opt. Soc. Am. B 19, 2331–2340 (2002).
[Crossref]
C.M. Smith, N. Venkataraman, M.T. Gallagher, D. Muller, J.A. West, N.F. Borelli, and K.W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre” Nature 424, 657–659 (2003).
[Crossref]
[PubMed]
T.T. Larsen, A. Bjarklev, and D.S. Hermann, “Optical devices based on liquid crystal photonics bandgap fibers,” Opt. Express 11, 2589–2596 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2589
[Crossref]
[PubMed]
N.M. Litchinitser, S.C. Dunn, B. Usner, B.J. Eggleton, T.P. White, R.C. McPhedran, and C.M. de Sterke, “Resonances in microstructured optical waveguides,” Opt. Express 11, 1243–1251 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-10-1243
[Crossref]
[PubMed]
A.K. Abeeluck, N. M. Litchinitser, C. Headley, and B.J. Eggleton, “Analysis of spectral characteristics of photonic bandgap waveguides,” Opt. Express 10, 1320–1333 (2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-23-1320
[Crossref]
[PubMed]
P.S.J. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[Crossref]
[PubMed]
R.F. Cregan, B.J. Mangan, J.C. Knight, T.A. Birks, P.S.J. Russell, P.J. Roberts, and D.C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref]
[PubMed]
A. Bjarklev, J. Broeng, and A.S. Bjarklev, Photonic Crystal Fibers (Kluwer Academic Publishers, Boston, 2000).
R.T. Bise, R.S. Windeler, K.S. Kranz, C. Kerbage, B.J. Eggleton, and D.J. Trevor, “Tunable photonic band gap fiber,” in Optical Fiber Communications Conference, Postconference Edition, vol. 70 of OSA Trends in Optics and Photonics Series Technical Digest (Optical Society of America, Washington D.C.2002) pp. 4f66–468.
M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon Press Ltd., Oxford, 1980), Sec. 7.6
Cargille Laboratories, Inc., Cedar Grove, NJ, USA, Data sheets: Refractive Index Liquid Series A, nD=1.60, Refractive Index Liquid Series M, nD=1.78