Abstract

An array of low-symmetry, L-shaped gold nanoparticles is shown to exhibit high sensitivity to the state of incident polarization. Small imperfections in the shape of the actual particles, including asymmetric arm lengths and edge distortions, break the symmetry attributed to an ideal particle. This broken symmetry leads to a large angular displacement of the extinction axes from their expected locations. More significantly, second-harmonic generation experiments reveal significant second-order susceptibility tensor components forbidden to the ideal symmetry.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. W. Gotschy, K. Vonmetz, A. Leitner, and F. R. Aussenegg, �??Optical dichroism of lithographically designed silver nanoparticles,�?? Opt. Lett. 21, 1099�??1101 (1996).
    [CrossRef] [PubMed]
  2. W. Gotschy, K. Vonmetz, A. Leitner, and F. R. Aussenegg, �??Thin films by regular patterns of metal nanoparticles: tailoring the optical properties by nanodesign,�?? Appl. Phys. B 63, 381�??384 (1996).
  3. S. Linden, J. Kuhl, and H. Giessen, �??Controlling the Interaction between Light and Gold Nanoparticles: Selective Suppression of Extinction,�?? Phys. Rev. Lett. 86, 4688�??4691 (2001).
    [CrossRef] [PubMed]
  4. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, �??Optical properties of two interacting gold nanoparticles,�?? Opt. Commun. 220, 137�??141 (2003).
    [CrossRef]
  5. K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, �??Interparticle Coupling Effects on Plasmon Resonances of Nanogold Particles,�?? Nano Lett. 3, 1087�??1090 (2003).
    [CrossRef]
  6. J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. G. d. Abajo, �??Optical properties of gold nanorings,�?? Phys. Rev. Lett. 90, 057401 (2003).
    [CrossRef] [PubMed]
  7. C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. V. Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, �??Nanoparticle Optics: The Importance of Radiative Dipole Coupling in Two-Dimensional Nanoparticle Arrays,�?? J. Phys. Chem. B 107, 7337�??7342 (2003).
    [CrossRef]
  8. G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, �??Plasmon dispersion relation of Au and Ag nanowires,�?? Phys. Rev. B 68, 155427 (2003).
    [CrossRef]
  9. T. Vallius, K. Jefimovs, J. Turunen, P. Vahimaa, and Y. Svirko, �??Optical activity in subwavelength-period arrays of chiral metallic particles,�?? Appl. Phys. Lett. 83, 234�??236 (2003).
    [CrossRef]
  10. A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, �??Optical Manifestations of Planar Chirality,�?? Phys. Rev. Lett. 90, 107404 (2003).
    [CrossRef] [PubMed]
  11. B. Lamprecht, A. Leitner, and F. R. Aussenegg, �??SHG studies of plasmon dephasing in nanoparticles,�?? Appl. Phys. B 68, 419�??423 (1999).
    [CrossRef]
  12. H. Tuovinen, M. Kauranen, K. Jefimovs, P. Vahimaa, T. Vallius, and J. Turunen, �??Linear and second-order nonlinear optical properties of arrays of noncentrosymmetric gold nanoparticles,�?? J. Nonlinear Opt. Phys. 11, 421�??432 (2002).
    [CrossRef]
  13. V. M. Shalaev and A. K. Sarychev, �??Nonlinear optics of random metal-dielectric films,�?? Phys. Rev. B 57, 13,265�??13,288 (1998).
    [CrossRef]
  14. M. I. Stockman, D. J. Bergman, C. Anceau, S. Brasselet, and J. Zyss, �??Enhanced Second-Harmonic Generation by Metal Surfaces with Nanoscale Roughness: Nanoscale Dephasing, Depolarization, and Correlations,�?? Phys. Rev. Lett. 92, 057402 (2004).
    [CrossRef] [PubMed]
  15. A. K. Sarychev, V. A. Shubin, and V. M. Shalaev, �??Anderson localization of surface plasmons and nonlinear optics of metal-dielectric composites,�?? Phys. Rev. B 60, 16,389�??16,408 (1999).
    [CrossRef]
  16. K. Li, M. I. Stockman, and D. J. Bergman, �??Self-Similar Chain of Metal Nanospheres as an Efficient Nanolens,�?? Phys. Rev. Lett. 91, 227402 (2003).
    [CrossRef] [PubMed]
  17. B. K. Canfield, S. Kujala, M. Kauranen, K. Jefimovs, T. Vallius, and J. Turunen, �??Remarkable polarization sensitivity of gold nanoparticle arrays,�?? submitted Sept. 2004 to Appl. Phys. Lett.
  18. Y. R. Shen, The Principles of Nonlinear Optics (John Wiley & Sons, New York, 1984).
  19. R. W. Boyd, Nonlinear Optics (Academic Press, San Diego, 1992).
  20. M. Kauranen, T. Verbiest, and A. Persoons, �??Second-order nonlinear optical signatures of surface chirality,�?? J. Mod. Opt. 45, 403�??423 (1998).
    [CrossRef]

Appl. Phys. B (2)

W. Gotschy, K. Vonmetz, A. Leitner, and F. R. Aussenegg, �??Thin films by regular patterns of metal nanoparticles: tailoring the optical properties by nanodesign,�?? Appl. Phys. B 63, 381�??384 (1996).

B. Lamprecht, A. Leitner, and F. R. Aussenegg, �??SHG studies of plasmon dephasing in nanoparticles,�?? Appl. Phys. B 68, 419�??423 (1999).
[CrossRef]

Appl. Phys. Lett. (2)

B. K. Canfield, S. Kujala, M. Kauranen, K. Jefimovs, T. Vallius, and J. Turunen, �??Remarkable polarization sensitivity of gold nanoparticle arrays,�?? submitted Sept. 2004 to Appl. Phys. Lett.

T. Vallius, K. Jefimovs, J. Turunen, P. Vahimaa, and Y. Svirko, �??Optical activity in subwavelength-period arrays of chiral metallic particles,�?? Appl. Phys. Lett. 83, 234�??236 (2003).
[CrossRef]

J. Mod. Opt. (1)

M. Kauranen, T. Verbiest, and A. Persoons, �??Second-order nonlinear optical signatures of surface chirality,�?? J. Mod. Opt. 45, 403�??423 (1998).
[CrossRef]

J. Nonlinear Opt. Phys. (1)

H. Tuovinen, M. Kauranen, K. Jefimovs, P. Vahimaa, T. Vallius, and J. Turunen, �??Linear and second-order nonlinear optical properties of arrays of noncentrosymmetric gold nanoparticles,�?? J. Nonlinear Opt. Phys. 11, 421�??432 (2002).
[CrossRef]

J. Phys. Chem. B (1)

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. V. Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, �??Nanoparticle Optics: The Importance of Radiative Dipole Coupling in Two-Dimensional Nanoparticle Arrays,�?? J. Phys. Chem. B 107, 7337�??7342 (2003).
[CrossRef]

Nano Lett. (1)

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, �??Interparticle Coupling Effects on Plasmon Resonances of Nanogold Particles,�?? Nano Lett. 3, 1087�??1090 (2003).
[CrossRef]

Opt. Commun. (1)

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, �??Optical properties of two interacting gold nanoparticles,�?? Opt. Commun. 220, 137�??141 (2003).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (3)

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, �??Plasmon dispersion relation of Au and Ag nanowires,�?? Phys. Rev. B 68, 155427 (2003).
[CrossRef]

V. M. Shalaev and A. K. Sarychev, �??Nonlinear optics of random metal-dielectric films,�?? Phys. Rev. B 57, 13,265�??13,288 (1998).
[CrossRef]

A. K. Sarychev, V. A. Shubin, and V. M. Shalaev, �??Anderson localization of surface plasmons and nonlinear optics of metal-dielectric composites,�?? Phys. Rev. B 60, 16,389�??16,408 (1999).
[CrossRef]

Phys. Rev. Lett. (5)

K. Li, M. I. Stockman, and D. J. Bergman, �??Self-Similar Chain of Metal Nanospheres as an Efficient Nanolens,�?? Phys. Rev. Lett. 91, 227402 (2003).
[CrossRef] [PubMed]

M. I. Stockman, D. J. Bergman, C. Anceau, S. Brasselet, and J. Zyss, �??Enhanced Second-Harmonic Generation by Metal Surfaces with Nanoscale Roughness: Nanoscale Dephasing, Depolarization, and Correlations,�?? Phys. Rev. Lett. 92, 057402 (2004).
[CrossRef] [PubMed]

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, �??Optical Manifestations of Planar Chirality,�?? Phys. Rev. Lett. 90, 107404 (2003).
[CrossRef] [PubMed]

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. G. d. Abajo, �??Optical properties of gold nanorings,�?? Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef] [PubMed]

S. Linden, J. Kuhl, and H. Giessen, �??Controlling the Interaction between Light and Gold Nanoparticles: Selective Suppression of Extinction,�?? Phys. Rev. Lett. 86, 4688�??4691 (2001).
[CrossRef] [PubMed]

Other (2)

Y. R. Shen, The Principles of Nonlinear Optics (John Wiley & Sons, New York, 1984).

R. W. Boyd, Nonlinear Optics (Academic Press, San Diego, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Top left: scanning electron micrograph of the sample, indicating the coordinate system used. Top right: polarized extinction spectra. Bottom: basic experimental setup.

Fig. 2.
Fig. 2.

(a) Transmittance (±.01) and fit to Eq. (1). Vertical lines indicate the axes X and Y. (b) Polarization azimuth rotation data (±0.1°) and model from Eq. (2). The vertical dotted lines indicate the axes A and B, while the horizontal dashed line is a zero-crossing guide to the eye.

Fig. 3.
Fig. 3.

Simple model to predict axis shift, α, based on the arm length ratio, ρ.

Fig. 4.
Fig. 4.

Normalized SHG polarization responses for selected combinations of (a) XY polarizations and (b) AB polarizations (solid lines: quadratic fits).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

T = T A sin 2 ( θ 45 ° α ) + T B cos 2 ( θ 45 ° α ) ,
Δ = arctan [ T B T A tan ( θ 45 ° α ) ] ( θ 45 ° α ) .

Metrics