Abstract

Fourier-transform imaging spectrometers offer important advantages over other spectral imaging modalities, such as, a wider free spectral range, higher spectral resolutions and, in low-photon-flux conditions, higher signal-to-noise ratios can be achieved. Unfortunately, for application in harsh environments, deployment of Fourier-transform instruments based on traditional moving-mirror interferometers is problematic due to their inherent sensitivity to vibration. We describe a new Fourier-transform imaging spectrometer, based on a scanning birefringent interferometer. This system retains the advantages of traditional Fourier transform instruments, but is inherently compact and insensitive to vibration. Furthermore, the precision requirements of the movement can be relaxed by typically two orders of magnitude in comparison to a traditional two-beam interferometer. The instrument promises to enable application of Fourier-transform imaging spectrometry to applications, such as airborne reconnaissance and industrial inspection, for the first time. Example spectral images are presented.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A.R. Harvey, J. Beale, A.H. Greenaway, T.J. Hanlon and J. Williams, �??Technology options for imaging spectrometry�?? in Imaging Spectrometry VI, Descour & Shen, Proc. SPIE 4132, 13-24 (2000).
  2. P.J. Miller and A.R. Harvey, �??Signal to noise analysis of various imaging systems�?? in Biomarkers and Biological Spectral Imaging, Bearman, Bornhop & Levenson, Proc. SPIE 4259, 16-21 (2001).
  3. S.P.Davis, M.C.Abrams and J.W.Brault, Fourier Transform Spectrometry (Academic Press, 2001).
  4. M.J.Persky, �??A review of space infrared Fourier transform spectrometers for remote sensing,�?? Rev. Sci. Instrum. 66, 4763-4797 (1995).
    [CrossRef]
  5. A.R. Harvey and D.W. Fletcher-Holmes, �??Imaging Apparatus,�?? Patent WO2004 005870 A1, (2004).
  6. J W Brault, �??New approach to high-precision Fourier-transform spectrometer design,�?? Appl. Opt. 35, pp. 2891-2896 (1996)
    [CrossRef] [PubMed]
  7. G. Zahn, K. Oka, T. Ishigaki and N. Baba, �??Birefringent imaging spectrometer,�?? Appl. Opt. 41, 734-738 (2002).
    [CrossRef]
  8. R. Heintzmann, K.A. Lidke and T.M. Jovin, �??Double-pass Fourier transform imaging spectroscopy,�?? Optics Express, 12, pp 753-763 (2004)
    [CrossRef] [PubMed]
  9. L. J. Otten, A. D. Meigs, B. A. Jones, P. Prinzing, and D. S. Fronterhouse, �??Payload Qualification and Optical Performance Test Results for the MightySat II.1 Hyperspectral Imager,�?? Proc. SPIE. 3498, pp. 231-238 (1998)
    [CrossRef]
  10. J. Genest, P. Tremblay, and A. Villemaire, �??Throughput of tilted interferometers,�?? App. Opt. 37,21, pp. 4819-4822. 1998
    [CrossRef]
  11. M. Hashimoto and S. Kawata, �??Multichannel Fourier-transform infrared spectrometer,�?? Appl. Opt. 31, 6096-6101 (1992).
    [CrossRef] [PubMed]
  12. M.J. Padgett and A.R. Harvey, �??A static Fourier-transform spectrometer based on Wollaston prisms,�?? Rev. Sci. Instrum. 66, 2807-2811 (1995)
    [CrossRef]
  13. A.R.Harvey, �??Determination of the optical constants of thin films in the visible by dispersive Fourier transform spectroscopy,�?? Rev. of Sci. Instr. 69, pp. 3649-3658 (1998)
    [CrossRef]
  14. S. Prunet, B. Journet and G. Fortunato, �??Exact calculation of the optical path difference and description of a new birefringent interferometer,�?? Opt. Eng. 38, 983-990 (1999).
    [CrossRef]
  15. R.F. Horton, �??Optical design for a High Etendue Imaging Fourier Transform Spectrometer�?? in Imaging Spectrometry II, Descour & Mooney, Proc. SPIE 2819, 300-315 (1996).
  16. M. Françon and S. Mallick, Polarization Interferometers Applications in Microscopy and Macroscopy (Wiley-Interscience, 1972).
  17. Labview virtual instrumentation software for personal computers, (National Instruments, 2003), <a href= "http://www.ni.com/labview/.">http://www.ni.com/labview/.</a>
  18. Labsphere Inc, 231 Shaker Street, POB 70, North Sutton, NH 03260, USA.

App. Opt. (1)

J. Genest, P. Tremblay, and A. Villemaire, �??Throughput of tilted interferometers,�?? App. Opt. 37,21, pp. 4819-4822. 1998
[CrossRef]

Appl. Opt. (3)

Opt. Eng. (1)

S. Prunet, B. Journet and G. Fortunato, �??Exact calculation of the optical path difference and description of a new birefringent interferometer,�?? Opt. Eng. 38, 983-990 (1999).
[CrossRef]

Optics Express (1)

R. Heintzmann, K.A. Lidke and T.M. Jovin, �??Double-pass Fourier transform imaging spectroscopy,�?? Optics Express, 12, pp 753-763 (2004)
[CrossRef] [PubMed]

Proc. SPIE (4)

L. J. Otten, A. D. Meigs, B. A. Jones, P. Prinzing, and D. S. Fronterhouse, �??Payload Qualification and Optical Performance Test Results for the MightySat II.1 Hyperspectral Imager,�?? Proc. SPIE. 3498, pp. 231-238 (1998)
[CrossRef]

A.R. Harvey, J. Beale, A.H. Greenaway, T.J. Hanlon and J. Williams, �??Technology options for imaging spectrometry�?? in Imaging Spectrometry VI, Descour & Shen, Proc. SPIE 4132, 13-24 (2000).

P.J. Miller and A.R. Harvey, �??Signal to noise analysis of various imaging systems�?? in Biomarkers and Biological Spectral Imaging, Bearman, Bornhop & Levenson, Proc. SPIE 4259, 16-21 (2001).

R.F. Horton, �??Optical design for a High Etendue Imaging Fourier Transform Spectrometer�?? in Imaging Spectrometry II, Descour & Mooney, Proc. SPIE 2819, 300-315 (1996).

Rev. of Sci. Instr. (1)

A.R.Harvey, �??Determination of the optical constants of thin films in the visible by dispersive Fourier transform spectroscopy,�?? Rev. of Sci. Instr. 69, pp. 3649-3658 (1998)
[CrossRef]

Rev. Sci. Instrum. (2)

M.J.Persky, �??A review of space infrared Fourier transform spectrometers for remote sensing,�?? Rev. Sci. Instrum. 66, 4763-4797 (1995).
[CrossRef]

M.J. Padgett and A.R. Harvey, �??A static Fourier-transform spectrometer based on Wollaston prisms,�?? Rev. Sci. Instrum. 66, 2807-2811 (1995)
[CrossRef]

Other (5)

A.R. Harvey and D.W. Fletcher-Holmes, �??Imaging Apparatus,�?? Patent WO2004 005870 A1, (2004).

S.P.Davis, M.C.Abrams and J.W.Brault, Fourier Transform Spectrometry (Academic Press, 2001).

M. Françon and S. Mallick, Polarization Interferometers Applications in Microscopy and Macroscopy (Wiley-Interscience, 1972).

Labview virtual instrumentation software for personal computers, (National Instruments, 2003), <a href= "http://www.ni.com/labview/.">http://www.ni.com/labview/.</a>

Labsphere Inc, 231 Shaker Street, POB 70, North Sutton, NH 03260, USA.

Supplementary Material (3)

» Media 1: AVI (1556 KB)     
» Media 2: AVI (957 KB)     
» Media 3: AVI (1130 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

A schematic of the birefringent polarizing interferometer employed by the Fourier-transform hyperspectral imager. The optic axes within the Wollaston prisms are indicated by arrows and circles.

Fig. 2.
Fig. 2.

(a) An image of an extended scene consisting of 5 spectral calibration tiles; the associated animation file has a size of 1.5 Mb, (b) an example interferogram recorded at one of the pixels as a function of displacement of the Wollaston prism, (c) absolute albedo image; the associated animation file has a size of 1Mb and (d) albedo image of house plants; the associated animation file has a size of 1.1Mb.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Δ OPL 2 db tan θ ,
Δ OPL 2 bh tan θ
ε T ( ω , h ) d ω = τ 1 τ 2 ε o ( ω ) [ exp ( i ω ( t + hb tan θ c ) ) ± exp ( i ω ( t hb tan θ c ) ) ] d ω ,
I ( ω , h ) d ω = 2 ε o 2 ( ω ) τ 1 τ 2 2 [ 1 ± cos ( 2 ω bh tan ϑ c ) ] d ω .
I ( h ) = 2 τ 1 τ 2 2 ( I o ± 0 I o ( ω ) cos ( 2 ω bh tan θ c ) d ω )
σ i = i 1 2 b ( σ i ) N Δ h tan θ ,

Metrics