Abstract

Optical second harmonic generation (OSHG) in a two-dimension photonic crystal consisting of centro-symmetric dielectric is investigated. The calculation model and analyzing method for OSHG are discussed. Based on Finite Difference�??Time Domain algorithm, the electromagnetic field distribution in the structure and the intensity of second harmonic generation along the waveguide are analyzed. The results show that the acute spatial variation of electro-magnetic field results in the radiation of OSHG, and the intensity of OSHG is proportional to the square of the waveguide length. When the beam intensity of the pumping wave with a wavelength of 10.6 µm is 1.3MW/mm2, the power conversion efficiency is 0.268% for a silicon photonic crystal with a length of 40 µm.

© 2004 Optical Society of America

PDF Article

References

  • View by:
  • |

  1. Y. R.Shen, The Principles of Nonlinear Optics (John Wiley & Sons, New York, 1984).
  2. N. Bloembergen, �??Light wave at the boundary of nonlinear media,�?? Phys. Rev. 128, 606-608 (1962).
    [CrossRef]
  3. R. W. Terhune and P. Maker, �??Optical harmonic generation in Calcite,�?? Phys. Rev. Lett. 8, 21-24 (1962)
    [CrossRef]
  4. E. Yablonovitch, �??Inhibited spontaneous emission in solidstate physics,�?? Phys. Rev. Lett. 58, 2059-2064 (1987)
    [CrossRef]
  5. X. Luo, J. Shi, H. Wang, G. Yu, �??Surface plasmon polariton radiation from metallic photonic crystal slabs breaking the diffraction: Nano-storage and Nano-fabrication, M,�??. Phys. Lett. B 18, 945-954 (2004)
  6. G. D�??Aguanno, M. Centini, C. Sibilia et al, �??Ehencement of �?(2) cascading processes in 1-D photonic bandgap structures,�?? Opt. Lett. 24, 1663-1668 (1999)
  7. J. Martorell, R. Vilaseca, and R. Corbalan, �??Second harmonic generation in a photonic crystal,�?? Appl. Phys. Lett. 70, 702 -704(1997)
    [CrossRef]
  8. X. Luo, and T. Ishihara, �??Engineered Second harmonic generation in photonic crystal slabs consisted of centrosymmetric materials,�?? Advanced Dunction Materials, 14, 905-912 (2004)
  9. Allen Taflove, Computational Electrodynamics (Artech House, Boston London, 1995)
  10. P. S. Persan, �??Nonlinear optical properties of solid: energy consideration,�?? Phys. Rev. 130, 919-923(1963)
    [CrossRef]
  11. N. Bloembergen, Nonlinear Optics (W. A. Benjamin, Inc., 1977).
  12. KANE S.Yee, �??Numerical solution of initial boundary value problems involving Maxwell�??s equations in isotropic media,�?? IEEE Transaction on antennas and propagation, AP-14, 302-307 (1966)
    [CrossRef]
  13. G. D�??Aguanno, M. Centini, C. Sibilia et al, �??Photonic band gap edge effects in finite structures and application to �?(2) interactions,�?? Phy. Rev. E 64, 016609(2001)
    [CrossRef]
  14. Gary D. Landry and Theresa A. Maldonado, �??Counter propagating quasi-phase matching: a generalized analysis,�?? J. Opt. Soc. Am. B 21, 1509-1521(2004)
    [CrossRef]
  15. F. Genereux, S. W. Lconard, and H. M. van Driel, �??Large birefringence in 2-D silicon photonic crystals,�?? Phys. Rev. B 63, 161101-161108(2001)
    [CrossRef]
  16. P. K. Kashkarov, L. A. Golovan, A. B. Fedotov et al., �??Photonic bandgap materials and birefringence layers anisotropically nanostructured silicon,�?? J. Opt. Soc. Am. B 19, 2273-2278(2002)

Advanced Dunction Materials (1)

X. Luo, and T. Ishihara, �??Engineered Second harmonic generation in photonic crystal slabs consisted of centrosymmetric materials,�?? Advanced Dunction Materials, 14, 905-912 (2004)

Appl. Phys. Lett. (1)

J. Martorell, R. Vilaseca, and R. Corbalan, �??Second harmonic generation in a photonic crystal,�?? Appl. Phys. Lett. 70, 702 -704(1997)
[CrossRef]

IEEE Trans, on antennas and propagation (1)

KANE S.Yee, �??Numerical solution of initial boundary value problems involving Maxwell�??s equations in isotropic media,�?? IEEE Transaction on antennas and propagation, AP-14, 302-307 (1966)
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Lett. (1)

Phy. Rev. E (1)

G. D�??Aguanno, M. Centini, C. Sibilia et al, �??Photonic band gap edge effects in finite structures and application to �?(2) interactions,�?? Phy. Rev. E 64, 016609(2001)
[CrossRef]

Phys. Lett. B (1)

X. Luo, J. Shi, H. Wang, G. Yu, �??Surface plasmon polariton radiation from metallic photonic crystal slabs breaking the diffraction: Nano-storage and Nano-fabrication, M,�??. Phys. Lett. B 18, 945-954 (2004)

Phys. Rev. (2)

N. Bloembergen, �??Light wave at the boundary of nonlinear media,�?? Phys. Rev. 128, 606-608 (1962).
[CrossRef]

P. S. Persan, �??Nonlinear optical properties of solid: energy consideration,�?? Phys. Rev. 130, 919-923(1963)
[CrossRef]

Phys. Rev. B (1)

F. Genereux, S. W. Lconard, and H. M. van Driel, �??Large birefringence in 2-D silicon photonic crystals,�?? Phys. Rev. B 63, 161101-161108(2001)
[CrossRef]

Phys. Rev. Lett. (2)

R. W. Terhune and P. Maker, �??Optical harmonic generation in Calcite,�?? Phys. Rev. Lett. 8, 21-24 (1962)
[CrossRef]

E. Yablonovitch, �??Inhibited spontaneous emission in solidstate physics,�?? Phys. Rev. Lett. 58, 2059-2064 (1987)
[CrossRef]

Other (3)

Y. R.Shen, The Principles of Nonlinear Optics (John Wiley & Sons, New York, 1984).

Allen Taflove, Computational Electrodynamics (Artech House, Boston London, 1995)

N. Bloembergen, Nonlinear Optics (W. A. Benjamin, Inc., 1977).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics