## Abstract

One of the main challenges in integral imaging is to overcome the limited depth of field. Although it is widely assumed that such limitation is mainly imposed by diffraction due to lenslet imaging, we show that the most restricting factor is the pixelated structure of the sensor (CCD). In this context, we demonstrate that by proper reduction of the fill factor of pickup microlenses, the depth of field can be substantially improved with no deterioration of lateral resolution.

© 2004 Optical Society of America

Full Article |

PDF Article
### Equations (5)

Equations on this page are rendered with MathJax. Learn more.

(1)
$$H(\mathbf{x}\mathbf{\text{'}};\mathbf{x},z)={\mid \sum _{\mathbf{m}}\mathrm{exp}\{i\pi \frac{{\mid \mathbf{m}p-\mathbf{x}\mid}^{2}}{\lambda \left(a-z\right)}\}\int {P}_{z}\left({\mathbf{x}}_{\mathbf{o}}\right)\mathrm{exp}\left\{-i2\pi {\mathbf{x}}_{\mathbf{o}}\frac{\mathbf{x}\mathbf{\text{'}}+\left[{M}_{z}\left(\mathbf{m}p-\mathbf{x}\right)-\mathbf{m}p\right]}{\lambda \phantom{\rule{.2em}{0ex}}g}{d}^{2}{\mathbf{x}}_{\mathbf{o}}\right\}\mid}^{2},$$
(2)
$${P}_{z}\left({\mathbf{x}}_{\mathbf{o}}\right)=p\left({\mathbf{x}}_{\mathbf{o}}\right)\mathrm{exp}\left\{i\frac{\pi z}{\lambda a\left(a-z\right)}{\mid {\mathbf{x}}_{\mathbf{o}}\mid}^{2}\right\}.$$
(3)
$$H(\mathbf{x}\mathbf{\text{'}},\mathbf{x},z)={\mid {\tilde{P}}_{z}\left(\frac{\mathbf{x}\text{'}}{\lambda g}\right)\mid}^{2}\otimes \sum _{\mathbf{m}}\delta \left\{\mathbf{x}\text{'}-\left[\mathbf{m}p(1-{M}_{z}\right)-{M}_{z}\mathbf{x}]\right\}.$$
(4)
$${H}_{o}\left(r,z\right)={\mid \underset{0}{\overset{\frac{\varphi}{2}}{\int}}p\left({r}_{o}\right)\mathrm{exp}\left\{i\frac{\pi}{\lambda}\frac{z}{a\left(a-z\right)}{r}_{o}^{2}\right\}{J}_{o}\left(2\pi \frac{r{r}_{o}}{\lambda \phantom{\rule{.2em}{0ex}}g}\right){r}_{o}d{r}_{o}\mid}^{2},$$
(5)
$$\underset{0}{\overset{\frac{D}{2}}{\int}}{H}_{o}\left(r,z\right)r\phantom{\rule{.2em}{0ex}}\mathit{dr}=0.84\underset{0}{\overset{\infty}{\int}}{H}_{o}\left(r,z\right)r\phantom{\rule{.2em}{0ex}}\mathit{dr}.$$