Abstract

One of the main challenges in integral imaging is to overcome the limited depth of field. Although it is widely assumed that such limitation is mainly imposed by diffraction due to lenslet imaging, we show that the most restricting factor is the pixelated structure of the sensor (CCD). In this context, we demonstrate that by proper reduction of the fill factor of pickup microlenses, the depth of field can be substantially improved with no deterioration of lateral resolution.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. S. A. Benton, ed., Selected Papers on Three-Dimensional Displays (SPIE Optical Engineering Press, Bellingham, WA, 2001).
  2. B. Javidi and F. Okano, eds., Three Dimensional Television, Video, and Display Technologies (Springer, Berlin, 2002).
  3. D. H. McMahon and H. J. Caulfield, �??A technique for producing wide-angle holographic displays,�?? Appl. Opt. 9, 91-96 (1970).
    [CrossRef] [PubMed]
  4. P. Ambs, L. Bigue, R. Binet, J. Colineau, J.-C. Lehureau, and J.-P. Huignard, �??Image reconstruction using electrooptic holography,�?? Proc. 16th Annual Meeting of IEEE LEOS 2003, vol. 1 (IEEE, Piscataway, NJ, 2003) pp. 172-173.
  5. M. G. Lippmann, �??Epreuves reversibles donnant la sensation du relief,�?? J. Phys. (Paris) 7, 821-825 (1908).
  6. H. E. Ives, �??Optical properties of a Lippmann lenticulated sheet,�?? J. Opt. Soc. Am. 21, 171-176 (1931).
    [CrossRef]
  7. N. A. Valyus, Stereoscopy (Focal, London, 1966).
  8. T. Okoshi, "Optimum design and depth resolution of lens-shet and projection type three-dimensional displays," Appl. Opt. 10, 2284-2291 (1971).
    [CrossRef] [PubMed]
  9. Y. Igarishi, H. Murata, and M. Ueda, "3D display system using a computer-generated integral photograph," Jpn. J. Appl. Phys. 17, 1683-1684 (1978).
    [CrossRef]
  10. N. Davies, M. McCormick, and M. Brewin, "Design and analysis of an image transfer system using microlens arrays," Opt. Eng. 33, 3624-3633 (1994).
    [CrossRef]
  11. T. Motoki, H. Isono, and I. Yuyama, �??Present status of three-dimensional television research,�?? Proc. IEEE 83, 1009-1021 (1995).
    [CrossRef]
  12. F. Okano, H. Hoshino, J. Arai, and I. Yayuma, "Real time pickup method for a three-dimensional image based on integral photography," Appl. Opt. 36, 1598-1603 (1997).
    [CrossRef] [PubMed]
  13. H. Hoshino, F. Okano, H. Isono, and I. Yuyama, "Analysis of resolution limitation of integral photgraphy," J. Opt. Soc. Am. A 15, 2059-2065 (1998).
    [CrossRef]
  14. L. Erdman and K. J. Gabriel, "High resolution digital photography by use of a scanning microlens array," Appl. Opt. 40, 5592-5599 (2001).
    [CrossRef]
  15. H. Arimoto and B. Javidi, "Integral three-dimensional imaging with digital reconstruction," Opt. Lett. 26, 157-159 (2001).
    [CrossRef]
  16. J.-H. Park, S.-W. Min, S. Jung and B. Lee, "Analysis of viewing parameters for two display methods based on integral photography," Appl. Opt. 40, 5217-5232 (2001).
    [CrossRef]
  17. J.-S. Jang and B. Javidi, "Improved viewing resolution of three-dimensional integral imaging by use of nonstationary micro-optics," Opt. Lett. 27, 324-326 (2002).
    [CrossRef]
  18. J. Arai, H. Hoshino, M. Okui, and F. Okano, "Effects on the resolution characteristics of integral photography," J. Opt. Soc. Am. A 20, 996-1004 (2003).
    [CrossRef]
  19. S. Kishk and B. Javidi, "Improved resolution 3D object sensing and recognition using time multiplexed computational integral imaging," Opt. Express 11, 3528-3541 (2003).
    [CrossRef] [PubMed]
  20. M. Martínez-Corral, B. Javidi, R. Martínez-Cuenca, and G. Saavedra, �??Integral imaging with improved depth of field by use of amplitude modulated microlens array,�?? Appl. Opt. 43, 5805-5812 (2004).
    [CrossRef] [PubMed]
  21. Y. Frauel, O. Matoba, E. Tajahuerce, and B. Javidi, " Comparison of passive ranging integral imaging and active imaging digital holography for 3D object recognition," Appl. Opt. 43, 452-462 (2004).
    [CrossRef] [PubMed]
  22. J.-S. Jang and B. Javidi, "Improvement of viewing angle in integral imaging by use of moving lenslet arrays with low fill factor," Appl. Opt. 42, 1996-2002 (2003).
    [CrossRef] [PubMed]
  23. J.-H. Park, S. Jung, H. Choi and B. Lee, "Integral imaging with multiple image planes using uniaxial crystal plate," Opt. Express 11, 1862-1875 (2003).
    [CrossRef] [PubMed]
  24. J.-S. Jang, F. Jin and B. Javidi, "Three-dimensional integral imaging with large depth of focus by use of real and virtual image fields," Opt. Lett. 28, 1421-1423 (2003).
    [CrossRef] [PubMed]
  25. J.-S. Jang and B. Javidi, "Large depth-of-focus time-multiplexed three-dimensional integral imaging by use of lenslets with nonuniform focal lengths and aperture sizes," Opt. Lett. 28, 1924-1926 (2003).
    [CrossRef] [PubMed]
  26. F. Jin, J.-S. Jang, and B. Javidi, �??Effects of device resolution on three-dimensional integral imaging,�?? Opt. Lett. 29, 1345-1347 (2004).
    [CrossRef] [PubMed]
  27. J. Arai, M. Okui, M. Kobayashi, and F. Okano, �??Geometrical effects of positional errors in integral photography,�?? J. Opt. Soc. Am A 21, 951-958 (2004).
    [CrossRef]
  28. J.W. Goodman, Introduction to Fourier Optics (McGraw-Hill, Inc., New York 1996).

Annual Meeting of IEEE LEOS 2003 (1)

P. Ambs, L. Bigue, R. Binet, J. Colineau, J.-C. Lehureau, and J.-P. Huignard, �??Image reconstruction using electrooptic holography,�?? Proc. 16th Annual Meeting of IEEE LEOS 2003, vol. 1 (IEEE, Piscataway, NJ, 2003) pp. 172-173.

Appl. Opt. (8)

J. Opt. Soc. Am A (1)

J. Arai, M. Okui, M. Kobayashi, and F. Okano, �??Geometrical effects of positional errors in integral photography,�?? J. Opt. Soc. Am A 21, 951-958 (2004).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

J. Phys. (1)

M. G. Lippmann, �??Epreuves reversibles donnant la sensation du relief,�?? J. Phys. (Paris) 7, 821-825 (1908).

Jpn. J. Appl. Phys. (1)

Y. Igarishi, H. Murata, and M. Ueda, "3D display system using a computer-generated integral photograph," Jpn. J. Appl. Phys. 17, 1683-1684 (1978).
[CrossRef]

Opt. Eng. (1)

N. Davies, M. McCormick, and M. Brewin, "Design and analysis of an image transfer system using microlens arrays," Opt. Eng. 33, 3624-3633 (1994).
[CrossRef]

Opt. Express (2)

Opt. Lett. (5)

Proc. IEEE (1)

T. Motoki, H. Isono, and I. Yuyama, �??Present status of three-dimensional television research,�?? Proc. IEEE 83, 1009-1021 (1995).
[CrossRef]

Other (4)

S. A. Benton, ed., Selected Papers on Three-Dimensional Displays (SPIE Optical Engineering Press, Bellingham, WA, 2001).

B. Javidi and F. Okano, eds., Three Dimensional Television, Video, and Display Technologies (Springer, Berlin, 2002).

N. A. Valyus, Stereoscopy (Focal, London, 1966).

J.W. Goodman, Introduction to Fourier Optics (McGraw-Hill, Inc., New York 1996).

Supplementary Material (2)

» Media 1: GIF (333 KB)     
» Media 2: GIF (632 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Scheme, not to scale, of the capture setup of a 3D IIS. The field lens collects the rays from the outermost microlenses, the camera lens projects the images onto the CCD.

Fig. 2.
Fig. 2.

(a) Grey-scale representation of Eq. (4). Any cross-sections correspond to the spot produced by an object point at a depth z. White lines delimit the back-projected pixel size. The effect of defocus is much more appreciable for positive values of z; (b) Spot diameter for different values of the fill factor. The black thick line is used to mark the back-projected pixel size.

Fig. 3.
Fig. 3.

(a) Synthetic object; (b) 2D elemental images captured from 49 views; (c) Enlarged view of the central image. The object was placed at z=0 and the fill factor was set at ϕ/p=1.0

Fig. 4.
Fig. 4.

(a) 2D elemental images of the object captured from 49 different views; (b) Enlarged view of the central image. The object was placed at z=0 and the fill factor was set at ϕ/p=0.5.

Fig. 5.
Fig. 5.

Central elemental image as the object is displaced from z=0 to z=67.5 mm. Left-hand image corresponds to ϕ/p=0.5. Right-hand one to ϕ/p=1.0 (Video file of 0.33 Mb).

Fig. 6.
Fig. 6.

Evolution of the reconstructed image as the object is displace from z=0 to z=67.5 mm. Left-hand image corresponds to ϕ/p=0.5. Right-hand one to ϕ/p=1.0 (Video file of 0.63 Mb).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

H ( x ' ; x , z ) = m exp { i π m p x 2 λ ( a z ) } P z ( x o ) exp { i 2 π x o x ' + [ M z ( m p x ) m p ] λ g d 2 x o } 2 ,
P z ( x o ) = p ( x o ) exp { i π z λ a ( a z ) x o 2 } .
H ( x ' , x , z ) = P ˜ z ( x ' λ g ) 2 m δ { x ' [ m p ( 1 M z ) M z x ] } .
H o r z = 0 ϕ 2 p ( r o ) exp { i π λ z a ( a z ) r o 2 } J o ( 2 π r r o λ g ) r o d r o 2 ,
0 D 2 H o r z r dr = 0.84 0 H o r z r dr .

Metrics