Abstract

Two-photon polymerization (2PP) is a powerful technique for the fabrication of 3D micro- and submicro-structures. By applying laser powers that are only slightly above the polymerization threshold, 3D structuring of photosensitive materials with a resolution down to 100 nm can be realized. Here we report on woodpile photonic crystal structures fabricated in organic-inorganic hybrid polymers (Ormocers) and investigation of their optical properties. The fabricated crystals possess a photonic band gap in the near infrared spectral region. The polymeric woodpile structures can be used as templates for the fabrication of highly refractive TiO2 replicas. First results in this direction are presented.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Maruo, O. Nakamura, S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22, 132–134 (1997).
    [CrossRef] [PubMed]
  2. S. Kawata, H.-B. Sun, T. Tanaka, K. Takada, “Finer features for functional microdevices,” Nature (London) 412, 697–698 (2001).
    [CrossRef]
  3. B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature (London) 398, 51–54 (1999).
    [CrossRef]
  4. H.-B. Sun, S. Matsuo, H. Misawa, “Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin,” Appl. Phys. Lett. 74, 786–788 (1999).
    [CrossRef]
  5. H.-B. Sun, V. Mizeikis, Y. Xu, S. Juodkazis, J.-Y. Ye, S. Matsuo, H. Misawa, “Microcavities in polymeric photonic crystals,” Appl. Phys. Lett. 79, 1–3 (2001).
    [CrossRef]
  6. P. Galajda, P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78, 249–252 (2001).
    [CrossRef]
  7. M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, C.M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nature Mat. 3, 444–447 (2004).
    [CrossRef]
  8. M. Straub, M. Gu, “Near-infrared photonic crystals with higher-order bandgaps generated by two-photon photopolymerization,” Opt. Lett. 27, 1824–1826 (2002).
    [CrossRef]
  9. J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, M. Popall, “Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics,” Opt. Lett. 28, 301–303 (2003).
    [CrossRef] [PubMed]
  10. S.Y. Lin, J.G. Fleming, D.L. Hetherington, B.K. Smith, R. Biswas, K.M. Ho, M.M. Sigalas, W. Zubrzycki, S.R. Kurtz, J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature (London) 394, 251 (1998).
    [CrossRef]
  11. J.E.G.J. Wijnhoven, L. Bechger, W.L. Vos, “Fabrication and characterization of large macroporous photonic crystals in titania,” Chem. Mater. 13, 4486–4499 (2001).
    [CrossRef]

2004

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, C.M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nature Mat. 3, 444–447 (2004).
[CrossRef]

2003

2002

2001

S. Kawata, H.-B. Sun, T. Tanaka, K. Takada, “Finer features for functional microdevices,” Nature (London) 412, 697–698 (2001).
[CrossRef]

H.-B. Sun, V. Mizeikis, Y. Xu, S. Juodkazis, J.-Y. Ye, S. Matsuo, H. Misawa, “Microcavities in polymeric photonic crystals,” Appl. Phys. Lett. 79, 1–3 (2001).
[CrossRef]

P. Galajda, P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78, 249–252 (2001).
[CrossRef]

J.E.G.J. Wijnhoven, L. Bechger, W.L. Vos, “Fabrication and characterization of large macroporous photonic crystals in titania,” Chem. Mater. 13, 4486–4499 (2001).
[CrossRef]

1999

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature (London) 398, 51–54 (1999).
[CrossRef]

H.-B. Sun, S. Matsuo, H. Misawa, “Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin,” Appl. Phys. Lett. 74, 786–788 (1999).
[CrossRef]

1998

S.Y. Lin, J.G. Fleming, D.L. Hetherington, B.K. Smith, R. Biswas, K.M. Ho, M.M. Sigalas, W. Zubrzycki, S.R. Kurtz, J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature (London) 394, 251 (1998).
[CrossRef]

1997

Ananthavel, S. P.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature (London) 398, 51–54 (1999).
[CrossRef]

Barlow, S.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature (London) 398, 51–54 (1999).
[CrossRef]

Bechger, L.

J.E.G.J. Wijnhoven, L. Bechger, W.L. Vos, “Fabrication and characterization of large macroporous photonic crystals in titania,” Chem. Mater. 13, 4486–4499 (2001).
[CrossRef]

Biswas, R.

S.Y. Lin, J.G. Fleming, D.L. Hetherington, B.K. Smith, R. Biswas, K.M. Ho, M.M. Sigalas, W. Zubrzycki, S.R. Kurtz, J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature (London) 394, 251 (1998).
[CrossRef]

Bur, J.

S.Y. Lin, J.G. Fleming, D.L. Hetherington, B.K. Smith, R. Biswas, K.M. Ho, M.M. Sigalas, W. Zubrzycki, S.R. Kurtz, J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature (London) 394, 251 (1998).
[CrossRef]

Busch, K.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, C.M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nature Mat. 3, 444–447 (2004).
[CrossRef]

Chichkov, B. N.

Cronauer, C.

Cumpston, B. H.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature (London) 398, 51–54 (1999).
[CrossRef]

Deubel, M.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, C.M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nature Mat. 3, 444–447 (2004).
[CrossRef]

Domann, G.

Dyer, D. L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature (London) 398, 51–54 (1999).
[CrossRef]

Egbert, A.

Ehrlich, J. E.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature (London) 398, 51–54 (1999).
[CrossRef]

Erskine, L. L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature (London) 398, 51–54 (1999).
[CrossRef]

Fleming, J.G.

S.Y. Lin, J.G. Fleming, D.L. Hetherington, B.K. Smith, R. Biswas, K.M. Ho, M.M. Sigalas, W. Zubrzycki, S.R. Kurtz, J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature (London) 394, 251 (1998).
[CrossRef]

Freymann, G. von

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, C.M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nature Mat. 3, 444–447 (2004).
[CrossRef]

Fröhlich, L.

Galajda, P.

P. Galajda, P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78, 249–252 (2001).
[CrossRef]

Gu, M.

Heikal, A. A.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature (London) 398, 51–54 (1999).
[CrossRef]

Hetherington, D.L.

S.Y. Lin, J.G. Fleming, D.L. Hetherington, B.K. Smith, R. Biswas, K.M. Ho, M.M. Sigalas, W. Zubrzycki, S.R. Kurtz, J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature (London) 394, 251 (1998).
[CrossRef]

Ho, K.M.

S.Y. Lin, J.G. Fleming, D.L. Hetherington, B.K. Smith, R. Biswas, K.M. Ho, M.M. Sigalas, W. Zubrzycki, S.R. Kurtz, J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature (London) 394, 251 (1998).
[CrossRef]

Houbertz, R.

Juodkazis, S.

H.-B. Sun, V. Mizeikis, Y. Xu, S. Juodkazis, J.-Y. Ye, S. Matsuo, H. Misawa, “Microcavities in polymeric photonic crystals,” Appl. Phys. Lett. 79, 1–3 (2001).
[CrossRef]

Kawata, S.

S. Kawata, H.-B. Sun, T. Tanaka, K. Takada, “Finer features for functional microdevices,” Nature (London) 412, 697–698 (2001).
[CrossRef]

S. Maruo, O. Nakamura, S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22, 132–134 (1997).
[CrossRef] [PubMed]

Kuebler, S. M.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature (London) 398, 51–54 (1999).
[CrossRef]

Kurtz, S.R.

S.Y. Lin, J.G. Fleming, D.L. Hetherington, B.K. Smith, R. Biswas, K.M. Ho, M.M. Sigalas, W. Zubrzycki, S.R. Kurtz, J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature (London) 394, 251 (1998).
[CrossRef]

Lee, I.-Y. S.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature (London) 398, 51–54 (1999).
[CrossRef]

Lin, S.Y.

S.Y. Lin, J.G. Fleming, D.L. Hetherington, B.K. Smith, R. Biswas, K.M. Ho, M.M. Sigalas, W. Zubrzycki, S.R. Kurtz, J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature (London) 394, 251 (1998).
[CrossRef]

Marder, S. R.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature (London) 398, 51–54 (1999).
[CrossRef]

Maruo, S.

Matsuo, S.

H.-B. Sun, V. Mizeikis, Y. Xu, S. Juodkazis, J.-Y. Ye, S. Matsuo, H. Misawa, “Microcavities in polymeric photonic crystals,” Appl. Phys. Lett. 79, 1–3 (2001).
[CrossRef]

H.-B. Sun, S. Matsuo, H. Misawa, “Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin,” Appl. Phys. Lett. 74, 786–788 (1999).
[CrossRef]

McCord-Maughon, D.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature (London) 398, 51–54 (1999).
[CrossRef]

Misawa, H.

H.-B. Sun, V. Mizeikis, Y. Xu, S. Juodkazis, J.-Y. Ye, S. Matsuo, H. Misawa, “Microcavities in polymeric photonic crystals,” Appl. Phys. Lett. 79, 1–3 (2001).
[CrossRef]

H.-B. Sun, S. Matsuo, H. Misawa, “Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin,” Appl. Phys. Lett. 74, 786–788 (1999).
[CrossRef]

Mizeikis, V.

H.-B. Sun, V. Mizeikis, Y. Xu, S. Juodkazis, J.-Y. Ye, S. Matsuo, H. Misawa, “Microcavities in polymeric photonic crystals,” Appl. Phys. Lett. 79, 1–3 (2001).
[CrossRef]

Nakamura, O.

Ormos, P.

P. Galajda, P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78, 249–252 (2001).
[CrossRef]

Ostendorf, A.

Pereira, S.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, C.M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nature Mat. 3, 444–447 (2004).
[CrossRef]

Perry, J. W.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature (London) 398, 51–54 (1999).
[CrossRef]

Popall, M.

Qin, J.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature (London) 398, 51–54 (1999).
[CrossRef]

Rockel, H.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature (London) 398, 51–54 (1999).
[CrossRef]

Rumi, M.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature (London) 398, 51–54 (1999).
[CrossRef]

Schulz, J.

Serbin, J.

Sigalas, M.M.

S.Y. Lin, J.G. Fleming, D.L. Hetherington, B.K. Smith, R. Biswas, K.M. Ho, M.M. Sigalas, W. Zubrzycki, S.R. Kurtz, J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature (London) 394, 251 (1998).
[CrossRef]

Smith, B.K.

S.Y. Lin, J.G. Fleming, D.L. Hetherington, B.K. Smith, R. Biswas, K.M. Ho, M.M. Sigalas, W. Zubrzycki, S.R. Kurtz, J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature (London) 394, 251 (1998).
[CrossRef]

Soukoulis, C.M.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, C.M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nature Mat. 3, 444–447 (2004).
[CrossRef]

Straub, M.

Sun, H.-B.

H.-B. Sun, V. Mizeikis, Y. Xu, S. Juodkazis, J.-Y. Ye, S. Matsuo, H. Misawa, “Microcavities in polymeric photonic crystals,” Appl. Phys. Lett. 79, 1–3 (2001).
[CrossRef]

S. Kawata, H.-B. Sun, T. Tanaka, K. Takada, “Finer features for functional microdevices,” Nature (London) 412, 697–698 (2001).
[CrossRef]

H.-B. Sun, S. Matsuo, H. Misawa, “Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin,” Appl. Phys. Lett. 74, 786–788 (1999).
[CrossRef]

Takada, K.

S. Kawata, H.-B. Sun, T. Tanaka, K. Takada, “Finer features for functional microdevices,” Nature (London) 412, 697–698 (2001).
[CrossRef]

Tanaka, T.

S. Kawata, H.-B. Sun, T. Tanaka, K. Takada, “Finer features for functional microdevices,” Nature (London) 412, 697–698 (2001).
[CrossRef]

Vos, W.L.

J.E.G.J. Wijnhoven, L. Bechger, W.L. Vos, “Fabrication and characterization of large macroporous photonic crystals in titania,” Chem. Mater. 13, 4486–4499 (2001).
[CrossRef]

Wegener, M.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, C.M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nature Mat. 3, 444–447 (2004).
[CrossRef]

Wijnhoven, J.E.G.J.

J.E.G.J. Wijnhoven, L. Bechger, W.L. Vos, “Fabrication and characterization of large macroporous photonic crystals in titania,” Chem. Mater. 13, 4486–4499 (2001).
[CrossRef]

Wu, X.-L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature (London) 398, 51–54 (1999).
[CrossRef]

Xu, Y.

H.-B. Sun, V. Mizeikis, Y. Xu, S. Juodkazis, J.-Y. Ye, S. Matsuo, H. Misawa, “Microcavities in polymeric photonic crystals,” Appl. Phys. Lett. 79, 1–3 (2001).
[CrossRef]

Ye, J.-Y.

H.-B. Sun, V. Mizeikis, Y. Xu, S. Juodkazis, J.-Y. Ye, S. Matsuo, H. Misawa, “Microcavities in polymeric photonic crystals,” Appl. Phys. Lett. 79, 1–3 (2001).
[CrossRef]

Zubrzycki, W.

S.Y. Lin, J.G. Fleming, D.L. Hetherington, B.K. Smith, R. Biswas, K.M. Ho, M.M. Sigalas, W. Zubrzycki, S.R. Kurtz, J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature (London) 394, 251 (1998).
[CrossRef]

Appl. Phys. Lett.

H.-B. Sun, S. Matsuo, H. Misawa, “Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin,” Appl. Phys. Lett. 74, 786–788 (1999).
[CrossRef]

H.-B. Sun, V. Mizeikis, Y. Xu, S. Juodkazis, J.-Y. Ye, S. Matsuo, H. Misawa, “Microcavities in polymeric photonic crystals,” Appl. Phys. Lett. 79, 1–3 (2001).
[CrossRef]

P. Galajda, P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78, 249–252 (2001).
[CrossRef]

Chem. Mater.

J.E.G.J. Wijnhoven, L. Bechger, W.L. Vos, “Fabrication and characterization of large macroporous photonic crystals in titania,” Chem. Mater. 13, 4486–4499 (2001).
[CrossRef]

Nature (London)

S. Kawata, H.-B. Sun, T. Tanaka, K. Takada, “Finer features for functional microdevices,” Nature (London) 412, 697–698 (2001).
[CrossRef]

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature (London) 398, 51–54 (1999).
[CrossRef]

S.Y. Lin, J.G. Fleming, D.L. Hetherington, B.K. Smith, R. Biswas, K.M. Ho, M.M. Sigalas, W. Zubrzycki, S.R. Kurtz, J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature (London) 394, 251 (1998).
[CrossRef]

Nature Mat.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, C.M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nature Mat. 3, 444–447 (2004).
[CrossRef]

Opt. Lett.

Supplementary Material (1)

» Media 1: MPG (2539 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Principle setup for the fabrication of 3D structures by 2PP. A waveplate (WP) together with a polarizing beamsplitter is used as an attenuator, an acousto-optical modulator (AOM) in combination with an aperture as a fast shutter. The beam is expanded by a telescope and then coupled into an x-y galvo scanner. The sample is mounted on a 3D piezo stage for positioning in all directions. A CCD camera placed behind a dichroic mirror is used for online monitoring of the 2PP process.

Fig. 2.
Fig. 2.

Screenshot of a movie (2 MB) showing the fabrication process monitored online during two-photon polymerization of a -Venus statue (left, top view). SEM image of the respective Venus statue (right).

Fig. 3.
Fig. 3.

Two different sample configurations are used, mainly determined by the phase of the polymer (liquid or solid)

Fig. 4.
Fig. 4.

Left: Sketch of a woodpile structure. w determines the width of the rods, d is the distance between the rods, and c is the height of a unit cell, containing four layers of rods. Right: Reciprocal lattice (first Brillouin zone) of the fcc woodpile structure. A path through the k-space containing points of high symmetry is indicated by the colored line.

Fig. 5.
Fig. 5.

SEM images of woodpile structures fabricated by means of 2PP in Ormocers.

Fig. 6.
Fig. 6.

Calculated band structure (left) of a polymeric woodpile crystal with an in layer rod distance of 1.2 μm and measured transmission (right).

Fig. 7.
Fig. 7.

Measured transmission of woodpile structures with different in layer rod distances.

Fig. 8.
Fig. 8.

Calculated gap map of woodpile structures as a function of the refractive index contrast.

Fig. 9.
Fig. 9.

SEM images SU-8 templates fabricated by means of 2PP.

Fig. 10.
Fig. 10.

SEM image of a fraction of an inverted woodpile structure and the respective EDX spectrum.

Tables (1)

Tables Icon

Table 1. Steps needed for the fabrication of 3D microstructures by means of 2PP using Ormocer and SU-8 materials

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T = T measured ( 1 0.4 λ 4 ) 1 ,

Metrics