Abstract

Pump pulse duration is shown to determine the maximum efficiency of the up conversion process in ytterbium, thulium co-doped fluoride crystals through its role in determining the emitter temperature reached. We show that up-conversion efficiencies should only be measured when using the same pumping conditions as would be used in a proposed application and that thermal management of the up converting material is critical to optimized performance.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. N. Bloembergen, "Solid state infrared quantum counters," Phys. Rev. Lett. 2(3), 84-85 (1959).
    [CrossRef]
  2. L. Esterowitz, A. Schnitzler, J. Noonan, and J. Bahler, "Rare earth infrared quantum counter," Appl. Opt. 7(10), 2053-2070 (1968).
    [CrossRef] [PubMed]
  3. F. Auzel, "Application of resonant energy transfers to the laser effect in Er-doped glasses," Ann. Telecom. (Paris) 24(9-10), 363-376 (1969).
  4. J. E. Geusic, F. W. Ostermayer, H. M. Marcos, L. G. Van Uitert, and J. P. van der Ziel, "Efficiency of red, green, and blue infrared-to-visible conversion sources," J. Appl. Phys. 42(5), 1958-1960 (1971).
    [CrossRef]
  5. H. J. Guggenheim and L. F. Johnson, "New fluoride compounds for efficient infrared-to-visible conversion," Appl. Phys. Lett. 15(2), 51-52 (1969).
    [CrossRef]
  6. L. F. Johnson, J. E. Geusic, H. J. Guggenheim, T. Kushida, S. Singh, and L. G. Van Uitert, "Comments on materials for efficient infrared conversion," Appl. Phys. Lett. 15(2), 48-50 (1969).
    [CrossRef]
  7. L. G. Van Uitert, S. Singh, H. J. Levinstein, L. F. Johnson, W. H. Grodkiewicz, and J. E. Geusic, "Efficient infrared-to-visible conversion by rare-earth oxychlorides," Appl. Phys. Lett. 15(2), 53-54 (1969).
    [CrossRef]
  8. R. H. Page, K. I. Schaffers, P. A. Waide, J. B. Tassano, S. A. Payne, W. F. Krupke, and W. K. Bischel, "Upconversion-pumped luminescence efficiency of rare-earth-doped hosts sensitized with trivalent ytterbium," J. Opt. Soc. Am. B (Opt. Phys.) 15(3), 996-1008 (1998).
    [CrossRef]
  9. T. C. Rich and D. A. Pinnow, "Exploring the ultimate efficiency in infrared-to-visible converting phosphors activated with Er and sensitized with Yb," J. Appl. Phys. 453(5), 2357-2365 (1972).
    [CrossRef]
  10. F. Auzel and D. Pecile, "Comparison and efficiency of materials for summation of photons assisted by energy transfer," J. Lumin. 8(1), 32-43 (1973).
    [CrossRef]
  11. M. Bass and H. Jenssen, "Display medium using emitting particles dispersed in a transparent host," US Patent 6501590B2 (2002).
  12. A. Rapaport, F. Szipocs, J. Milliez, H. Jenssen, M. Bass, K. Schafer, and K. Belfield, "Optically written displays based on up-conversion of near infrared light," Conference Record of the 20th International Display Research Conference, 111-114 (2000).
  13. A. Rapaport, F. Szipocs, J. Milliez, H. Jenssen, M. Bass, K. Schafer, K. Belfield, and M. Bass, "Optically written displays based on up-conversion of near infrared light," IDW '00. Proceedings of the Seventh International Display Workshops, 825-828 (2000).
  14. M. L. F. Phillips, M. P. Hehlen, K. Nguyen, J. M. Sheldon, and N. J. Cockroft, "Upconversion phosphors: recent advances and new applications," Physics and Chemistry of Luminescent Materials. Proceedings of the Eighth International Symposium (Electrochemical Society Proceedings Vol.99-40), 123-129 (2000).
  15. A. Rapaport, J. Milliez, F. Szipocs, H. Jenssen, A. Cassanho, and M. Bass, "Up-conversion efficiency of potential candidates for photonic displays," SID'2003 International Symposium- Digest of technical papers XXXIV, Book 2, 1230-1233 (2003).
  16. S. A. Wade, S. F. Collins, and G.W. Baxter, "Fluorescence intensity ratio technique for optical fiber point temperature sensing," Appl. Phys. Rev. 94(8), 4743-4756 (2003).
    [CrossRef]
  17. W.C. Schwartz, J. Harrison, and P.F. Moulton, "A diode-pumped, solid state Nd:YLF laser for micromachining" (Qpeak, 1996), <a href="http://www.qpeak.com/Papers/ICALEO96/icaleo96.htm">http://www.qpeak.com/Papers/ICALEO96/icaleo96.htm</a>.
  18. San Diego Plastics - CYRO Acrylite, "Acrylic sheet", <a href="http://www.sdplastics.com/acrylit1.html">http://www.sdplastics.com/acrylit1.html</a>.
  19. "Cooling Fundamentals: Thermal Conductivity" (FrostyTech), <a href="http://www.frostytech.com/articleview.cfm?articleID=233">http://www.frostytech.com/articleview.cfm?articleID=233</a>.

20th International Display Research Conf (1)

A. Rapaport, F. Szipocs, J. Milliez, H. Jenssen, M. Bass, K. Schafer, and K. Belfield, "Optically written displays based on up-conversion of near infrared light," Conference Record of the 20th International Display Research Conference, 111-114 (2000).

Ann. Telecom. (Paris) (1)

F. Auzel, "Application of resonant energy transfers to the laser effect in Er-doped glasses," Ann. Telecom. (Paris) 24(9-10), 363-376 (1969).

Appl. Opt. (1)

Appl. Phys. Lett. (3)

H. J. Guggenheim and L. F. Johnson, "New fluoride compounds for efficient infrared-to-visible conversion," Appl. Phys. Lett. 15(2), 51-52 (1969).
[CrossRef]

L. F. Johnson, J. E. Geusic, H. J. Guggenheim, T. Kushida, S. Singh, and L. G. Van Uitert, "Comments on materials for efficient infrared conversion," Appl. Phys. Lett. 15(2), 48-50 (1969).
[CrossRef]

L. G. Van Uitert, S. Singh, H. J. Levinstein, L. F. Johnson, W. H. Grodkiewicz, and J. E. Geusic, "Efficient infrared-to-visible conversion by rare-earth oxychlorides," Appl. Phys. Lett. 15(2), 53-54 (1969).
[CrossRef]

Appl. Phys. Rev. (1)

S. A. Wade, S. F. Collins, and G.W. Baxter, "Fluorescence intensity ratio technique for optical fiber point temperature sensing," Appl. Phys. Rev. 94(8), 4743-4756 (2003).
[CrossRef]

Electrochemical Society Proceedings (1)

M. L. F. Phillips, M. P. Hehlen, K. Nguyen, J. M. Sheldon, and N. J. Cockroft, "Upconversion phosphors: recent advances and new applications," Physics and Chemistry of Luminescent Materials. Proceedings of the Eighth International Symposium (Electrochemical Society Proceedings Vol.99-40), 123-129 (2000).

FrostyTech (1)

"Cooling Fundamentals: Thermal Conductivity" (FrostyTech), <a href="http://www.frostytech.com/articleview.cfm?articleID=233">http://www.frostytech.com/articleview.cfm?articleID=233</a>.

International Display Workshops 2000 (1)

A. Rapaport, F. Szipocs, J. Milliez, H. Jenssen, M. Bass, K. Schafer, K. Belfield, and M. Bass, "Optically written displays based on up-conversion of near infrared light," IDW '00. Proceedings of the Seventh International Display Workshops, 825-828 (2000).

J. Appl. Phys. (2)

T. C. Rich and D. A. Pinnow, "Exploring the ultimate efficiency in infrared-to-visible converting phosphors activated with Er and sensitized with Yb," J. Appl. Phys. 453(5), 2357-2365 (1972).
[CrossRef]

J. E. Geusic, F. W. Ostermayer, H. M. Marcos, L. G. Van Uitert, and J. P. van der Ziel, "Efficiency of red, green, and blue infrared-to-visible conversion sources," J. Appl. Phys. 42(5), 1958-1960 (1971).
[CrossRef]

J. Lumin. (1)

F. Auzel and D. Pecile, "Comparison and efficiency of materials for summation of photons assisted by energy transfer," J. Lumin. 8(1), 32-43 (1973).
[CrossRef]

J. Opt. Soc. Am. B (1)

Phys. Rev. Lett. (1)

N. Bloembergen, "Solid state infrared quantum counters," Phys. Rev. Lett. 2(3), 84-85 (1959).
[CrossRef]

Qpeak, 1996 (1)

W.C. Schwartz, J. Harrison, and P.F. Moulton, "A diode-pumped, solid state Nd:YLF laser for micromachining" (Qpeak, 1996), <a href="http://www.qpeak.com/Papers/ICALEO96/icaleo96.htm">http://www.qpeak.com/Papers/ICALEO96/icaleo96.htm</a>.

SID'2003 (1)

A. Rapaport, J. Milliez, F. Szipocs, H. Jenssen, A. Cassanho, and M. Bass, "Up-conversion efficiency of potential candidates for photonic displays," SID'2003 International Symposium- Digest of technical papers XXXIV, Book 2, 1230-1233 (2003).

Other (2)

San Diego Plastics - CYRO Acrylite, "Acrylic sheet", <a href="http://www.sdplastics.com/acrylit1.html">http://www.sdplastics.com/acrylit1.html</a>.

M. Bass and H. Jenssen, "Display medium using emitting particles dispersed in a transparent host," US Patent 6501590B2 (2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Energy level diagram of Yb3+ and Tm3+ in YLF. Possible energy transfers from Yb to Tm are indicated in red thick solid lines, radiative decays are indicated in blue thin solid lines, and cross-relaxations are indicated black lines with hollow arrowheads. Energy back transfer from Tm to Yb is also possible along the same pathways.

Fig. 2.
Fig. 2.

Emission spectra of 0.4% Tm, 25% Yb:YLF. Three conditions of excitation were used: the red bold line corresponds to continuous pumping at 155 mW average power, the green thin line represents 5 ms pulse at a repetition rate of 30 Hz at 54 mW average power, and the black dotted line represents 2 ms pulse at a repetition rate of 30 Hz at 50 mW average power. The output luminance in the blue was the same in the three excitation conditions (58 mLm). The sample holder was made of acrylic; the powder was packed binder-free into the hole.

Fig. 3.
Fig. 3.

Temperature of the emitting powder for various output powers in a sample of 0.4% Tm, 25% Yb:YLF. Two sample holders were used: acrylic (solid lines) and copper (dashed lines). The solid red symbols indicate cw excitation, the hollow green symbols a 30 Hz, 5 ms pulse. The average input power ranged from 8 mW to 330 mW in cw and from 8 mW to 230 mW using pulsed excitation.

Fig. 4.
Fig. 4.

Normalized output power from the blue up-conversion material Yb,Tm:YLF as a function of temperature using low incident pump energy (150 μJ) delivered in a 4 ns duration pulse. The crosses are experimental data points and the dotted line is simply indicative of a trend.

Metrics