Abstract

We present simple modifications of the classic Z-scan technique for the investigations of nonlinear chiroptical effects, i.e. nonlinear circular birefringence and two-photon circular dichroism. Two methods for studying these effects: a “polarimetric Z-scan” and a “polarization modulated Z-scan” are described in detail. These techniques were applied to estimate the order of magnitude of the effects for several different materials.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. P. N. Prasad. Introduction to biophotonics (Wiley & Sons, Hoboken, New Jersey, 2003).
    [CrossRef]
  2. I. Tinoco, Jr., "Two-photon circular dichroism," J. Chem. Phys. 62, 1006-1009 (1975).
    [CrossRef]
  3. E. A. Power, "Two-photon circular dichroism," J. Chem. Phys. 63, 1348-1350 (1975).
    [CrossRef]
  4. G. Wagniere, "Optical-activity of higher-order in a medium of randomly oriented molecules," J. Chem. Phys. 77, 2786-2792 (1982).
    [CrossRef]
  5. S. Kielich, "Nonlinear optical activity in liquids," Acta Physica Polonica 35, 861-862 (1969).
  6. D. V. Vlasov and V. P. Zaitsev, "Experimental observation of nonlinear optical activity," Pis'ma Zh. Eksp. Teor. Fiz. 14, 171-175 (1971).
  7. R. Cameron and G. C. Tabisz, "Observation of two-photon optical rotation by molecules," Mol. Phys. 90, 159-164 (1997).
  8. F. Hache, H. Mesnil, M. C. Schanne-Klein, "Nonlinear circular dichroism in a liquid of chiral molecules: A theoretical investigation," Phys. Rev. B 60, 6405-6411 (1999).
    [CrossRef]
  9. H. Mesnil and F. Hache, "Experimental evidence of third-order nonlinear dichroism in a liquid of chiral molecules," Phys. Rev. Lett. 85, 4257-4260 (2000).
    [CrossRef] [PubMed]
  10. H. Mesnil, M. C. Schanne-Klein, F. Hache, M. Alexandre, G. Lemercier, C. Andraud, "Experimental observation of nonlinear circular dichroism in a pump-probe experiment," Chem. Phys. Lett. 338, 269-276 (2001).
    [CrossRef]
  11. H. Mesnil, M. C. Schanne-Klein, F. Hache, M. Alexandre, G. Lemercier, C. Andraud, "Wavelength dependence of nonlinear circular dichroism in a chiral ruthenium-tris(bipyridyl) solution," Phys. Rev. A 66, 013802 (2002).
    [CrossRef]
  12. J. Sztucki and W. Strek, "Two-photon circular dichroism in lanthanide(III) complexes," 85, J. Chem. Phys. 5547-5550 (1986).
    [CrossRef]
  13. K. E. Gunde and F. S. Richardson, "Fluorescence-detected two-photon circular dichroism of Gd3+ in trigonal Na3[Gd(C4H4O5)3].2NaClO4.6H2O," Chem. Phys. 194, 195-206 (1995).
    [CrossRef]
  14. M. Sheikh-bahae, A. A. Said, T. Wei, D. J. Hagan, E. W. v. Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron. 26, 760-769 (1990).
    [CrossRef]
  15. A. Pucci, S. Nannizzi, G. Pescitelli, L. D. Bari, G. Ruggeri, "Chiroptical properties of terthiophene chromophores dispersed in oriented and unoriented polyethylene films," Macrom. Chemistry and Physics 205, 786-794 (2004).
    [CrossRef]
  16. D. H. Turner, I. Tinoco, M. Maestre, "Fluorescence detected circular-dichroism," J. Am. Chem. Soc. 96, 4340-4342 (1974).
    [CrossRef]
  17. X. Xie and J. D. Simon, "Picosecond circular dichroism spectroscopy: A Jones matrix analysis," J. Opt. Soc. Am. B 7, 1673-1684 (1990).
    [CrossRef]

Acta Physica Polonica

S. Kielich, "Nonlinear optical activity in liquids," Acta Physica Polonica 35, 861-862 (1969).

Chem. Phys.

K. E. Gunde and F. S. Richardson, "Fluorescence-detected two-photon circular dichroism of Gd3+ in trigonal Na3[Gd(C4H4O5)3].2NaClO4.6H2O," Chem. Phys. 194, 195-206 (1995).
[CrossRef]

Chem. Phys. Lett.

H. Mesnil, M. C. Schanne-Klein, F. Hache, M. Alexandre, G. Lemercier, C. Andraud, "Experimental observation of nonlinear circular dichroism in a pump-probe experiment," Chem. Phys. Lett. 338, 269-276 (2001).
[CrossRef]

IEEE J. Quantum Electron.

M. Sheikh-bahae, A. A. Said, T. Wei, D. J. Hagan, E. W. v. Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron. 26, 760-769 (1990).
[CrossRef]

J. Am. Chem. Soc.

D. H. Turner, I. Tinoco, M. Maestre, "Fluorescence detected circular-dichroism," J. Am. Chem. Soc. 96, 4340-4342 (1974).
[CrossRef]

J. Chem. Phys.

J. Sztucki and W. Strek, "Two-photon circular dichroism in lanthanide(III) complexes," 85, J. Chem. Phys. 5547-5550 (1986).
[CrossRef]

I. Tinoco, Jr., "Two-photon circular dichroism," J. Chem. Phys. 62, 1006-1009 (1975).
[CrossRef]

E. A. Power, "Two-photon circular dichroism," J. Chem. Phys. 63, 1348-1350 (1975).
[CrossRef]

G. Wagniere, "Optical-activity of higher-order in a medium of randomly oriented molecules," J. Chem. Phys. 77, 2786-2792 (1982).
[CrossRef]

J. Opt. Soc. Am. B

Macrom. Chemistry and Physics

A. Pucci, S. Nannizzi, G. Pescitelli, L. D. Bari, G. Ruggeri, "Chiroptical properties of terthiophene chromophores dispersed in oriented and unoriented polyethylene films," Macrom. Chemistry and Physics 205, 786-794 (2004).
[CrossRef]

Mol. Phys.

R. Cameron and G. C. Tabisz, "Observation of two-photon optical rotation by molecules," Mol. Phys. 90, 159-164 (1997).

Phys. Rev. A

H. Mesnil, M. C. Schanne-Klein, F. Hache, M. Alexandre, G. Lemercier, C. Andraud, "Wavelength dependence of nonlinear circular dichroism in a chiral ruthenium-tris(bipyridyl) solution," Phys. Rev. A 66, 013802 (2002).
[CrossRef]

Phys. Rev. B

F. Hache, H. Mesnil, M. C. Schanne-Klein, "Nonlinear circular dichroism in a liquid of chiral molecules: A theoretical investigation," Phys. Rev. B 60, 6405-6411 (1999).
[CrossRef]

Phys. Rev. Lett.

H. Mesnil and F. Hache, "Experimental evidence of third-order nonlinear dichroism in a liquid of chiral molecules," Phys. Rev. Lett. 85, 4257-4260 (2000).
[CrossRef] [PubMed]

Pis'ma Zh. Eksp. Teor. Fiz.

D. V. Vlasov and V. P. Zaitsev, "Experimental observation of nonlinear optical activity," Pis'ma Zh. Eksp. Teor. Fiz. 14, 171-175 (1971).

Other

P. N. Prasad. Introduction to biophotonics (Wiley & Sons, Hoboken, New Jersey, 2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Principle of polarimetric Z-scan.

Fig. 2.
Fig. 2.

Polarimetric Z-scan on a solution of sucrose at 650 nm (100 fs pulses at 1 kHz). Spot size w0=35 μm, zR=5 mm. Peak intensity ≈ 100 GW/cm2. Thin lines: theory, thick lines: experimental. A) Polarizers at the position of minimum transmission, B) Analyzer rotated clockwise by 2.6 deg, C) Analyzer rotated counterclockwise by 2.0 deg.

Fig. 3.
Fig. 3.

Principle of polarization-modulated Z-scan measurements.

Fig. 4.
Fig. 4.

f1 and 2f2 modulation closed aperture Z-scans for (-)α-pinene.

Fig. 5.
Fig. 5.

f1 and 2f2 modulation open aperture Z-scans for (1R-4-nitrophenylethyl) -5‶-thiooctadecyl-[2,2‵:5‵,2‶] terthien-5-ylmethylidene amine.

Tables (1)

Tables Icon

Table 1. Nonlinear circular birefringence of two isomers of pinene measured relative to the nonlinear refractive index of acetone at 775 nm (n2 = appr. 1×10-15 cm2/W)

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P T = P S + P 0 sin 2 [ Ω + d ϕ d I I ( z ) ]
δ n 2 , c n 2 , a v ( Δ I ( 2 f 2 ) Δ I ( f 1 ) ) closed apert . and δ β c β a v ( Δ I ( 2 f 2 ) Δ I ( f 1 ) ) open apert .

Metrics