Abstract

Based on the characteristic of a confocal microscope (CM) that the offset of a pinhole along an optical axis changes the axial intensity response phase, a novel tri-heterodyne confocal microscope is built up by dividing the CM measurement light path into three paths, and using three sets of focusing lenses, detectors and pinholes placed behind, on and before the focal plane to form three detection systems, thereby achieving the axial superresolution imaging and high Signal Noise Ratio (SNR) through pairwise heterodyne subtraction of three intensity signals with given phases received by the three detection systems and data processing. Simulation and experimental results indicate that the new tri-heterodyne confocal microscope reduces the full width at the half maximum of CM axial response curve by more than 50%, results in the significant improvement of CM anti-interference capability, and enables CM to be more suitable for high accuracy bipolar absolute measurement of 3D microstructures and surface contours.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. T.Wilson, Confocal Microscopy (Academic press limited, 1990).
  2. J. Pawley, Handbook of Biological Confocal Microscopy (Plenum, New York, 1995).
    [CrossRef]
  3. Min Gu, Principles of three-dimensional Imaging in Confocal Microscopes (World Scientific Publishing Co.Pte.Ltd., Singapore,1996).
  4. A. Diaspro (ed.) Confocal and Two-Photon Microscopy. Foundations, Applications and Advances (Wiley, New York, 2001).
  5. C.H.Lee and J.P.Wang,�??Noninterferometric Differential Confocal Microscopy With 2-nm Depth Resolution,�?? Opt. Commun.135,233~237(1997).
    [CrossRef]
  6. T.Wilson and S.J.Hewlett, �??Superresonlution in confocal scanning microscopy,�?? Opt.Lett. 16, 1062-1064 (1991).
    [CrossRef] [PubMed]
  7. Daniel M.de Juana, Jose E.Oti and Vidal F.Canales, �??Design of superresolving continuous phase filters,�?? Opt. Lett. 28, 607-609 (2003).
    [CrossRef] [PubMed]
  8. Liu Li, Deng Xiao-qang and Wang Gui-ying, �??Phase-only optical pupil filter for improving axial resolution in confocal microscopy,�?? Acta Physica Sinica 50, 48-51(2001).
  9. Tasso R.M.Sales and Michael Morris, �??Fundamental limits of optical superresolution,�?? Opt. Lett. 22, 582-584 (1997).
    [CrossRef] [PubMed]
  10. C.J. Schwarz, Y. Kuznetsova and S.R.J. Brueck, �??Imaging interferometric microscopy,�?? Opt. Lett. 28, 1424 �??1426 (2003).
    [CrossRef] [PubMed]
  11. X. Chen and S.R.J Brueck, �??Imaging interferometric lithography: approaching the resolution limits of optics,�?? Opt.Lett. 24, 124�??126 (1999).
    [CrossRef]
  12. Vicente Mico. AIDO and Zeev Zalevsky, �??Single-step superresolution by interferometric imaging,�?? Opt. Express 12, 2589-2596 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-12-2589">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-12-2589</a>
    [CrossRef] [PubMed]
  13. M.Martinez-Corral, C.Ibáñez-López and G.Saavedra, Universidad de Valencia, �??Axial gain resolution in optical sectioning fluorescence microscopy by shaded-ring filters,�?? Opt. Express 15, 1740-1745 (2003). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-15-1740">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-15-1740</a>
    [CrossRef]
  14. Haifeng Wang, �??New approach to supperresolution,�?? Opt. Eng. 40, 851-855 (2001).
    [CrossRef]
  15. Andrew I. Whiting, Ayman F.Abouraddy, Bahaa E.A.Saleh and Malvin C. Teich, �??Polarization-assisted transverse and axial optical superresolution,�?? Opt. Express 15, 1714-1723 (2003).
    [CrossRef]

Acta Physica Sinica (1)

Liu Li, Deng Xiao-qang and Wang Gui-ying, �??Phase-only optical pupil filter for improving axial resolution in confocal microscopy,�?? Acta Physica Sinica 50, 48-51(2001).

Opt. Commun. (1)

C.H.Lee and J.P.Wang,�??Noninterferometric Differential Confocal Microscopy With 2-nm Depth Resolution,�?? Opt. Commun.135,233~237(1997).
[CrossRef]

Opt. Eng. (1)

Haifeng Wang, �??New approach to supperresolution,�?? Opt. Eng. 40, 851-855 (2001).
[CrossRef]

Opt. Express (3)

Andrew I. Whiting, Ayman F.Abouraddy, Bahaa E.A.Saleh and Malvin C. Teich, �??Polarization-assisted transverse and axial optical superresolution,�?? Opt. Express 15, 1714-1723 (2003).
[CrossRef]

Vicente Mico. AIDO and Zeev Zalevsky, �??Single-step superresolution by interferometric imaging,�?? Opt. Express 12, 2589-2596 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-12-2589">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-12-2589</a>
[CrossRef] [PubMed]

M.Martinez-Corral, C.Ibáñez-López and G.Saavedra, Universidad de Valencia, �??Axial gain resolution in optical sectioning fluorescence microscopy by shaded-ring filters,�?? Opt. Express 15, 1740-1745 (2003). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-15-1740">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-15-1740</a>
[CrossRef]

Opt. Lett. (3)

Opt.Lett. (2)

X. Chen and S.R.J Brueck, �??Imaging interferometric lithography: approaching the resolution limits of optics,�?? Opt.Lett. 24, 124�??126 (1999).
[CrossRef]

T.Wilson and S.J.Hewlett, �??Superresonlution in confocal scanning microscopy,�?? Opt.Lett. 16, 1062-1064 (1991).
[CrossRef] [PubMed]

Other (4)

T.Wilson, Confocal Microscopy (Academic press limited, 1990).

J. Pawley, Handbook of Biological Confocal Microscopy (Plenum, New York, 1995).
[CrossRef]

Min Gu, Principles of three-dimensional Imaging in Confocal Microscopes (World Scientific Publishing Co.Pte.Ltd., Singapore,1996).

A. Diaspro (ed.) Confocal and Two-Photon Microscopy. Foundations, Applications and Advances (Wiley, New York, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Tri-heterodyne CM with axial superresolution.

Fig. 2.
Fig. 2.

Simulated curved surfaces of TCM and CM intensity

Fig. 3.
Fig. 3.

Simulated axial intensity curves with uM =5.21.

Fig. 4.
Fig. 4.

Simulated axial intensity curves when uM =8.0.

Fig. 5.
Fig. 5.

Measured intensity response curves.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

I 1 v u , + u M = [ 2 0 1 P ( ρ ) · exp ( ju ρ 2 2 ) J 0 ( ρv ) ρdρ ] 2 × [ 2 0 1 P ( ρ ) · exp ( j ρ 2 ( u + u M ) 2 ) J 0 ( ρv ) ρdρ ] 2
u = ( 8 π λ ) z sin 2 ( α 0 2 ) , v ( 2 π λ ) r sin α 0
I 2 v u , u M = [ 2 0 1 P ( ρ ) · exp ( ju ρ 2 2 ) J 0 ( ρv ) ρdρ ] 2 × [ 2 0 1 P ( ρ ) · exp ( j ρ 2 ( u u M ) 2 ) J 0 ( ρv ) ρdρ ] 2
I 3 v u , 0 = [ 2 0 1 P ( ρ ) · exp ( ju ρ 2 2 ) J 0 ( ρv ) ρdρ ] 2 × [ 2 0 1 P ( ρ ) · exp ( ju ρ 2 2 ) J 0 ( ρv ) ρdρ ] 2
{ I A v u = I 3 v u 0 I 2 v u u M I B v u = I 3 v u 0 I 1 v u + u M I C v u = I 2 v u u M I 1 v u + u M
I v u = { I A v u , when I C v u 0 I B v u , when I C v u < 0
k A 0, 0 u M = sin c [ ( u M ) 4 π ] · [ ( u M 4 ) · cos ( u M 4 ) sin ( u M 4 ) ] { ( u M 4 ) } 2
k B 0, 0 u M = sin c [ ( u M ) 4 π ] · [ ( u M 4 ) · cos ( u M 4 ) sin ( u M 4 ) ] { ( u M 4 ) } 2
k C 0, 0 u M = 2 sin c [ ( u M ) 4 π ] · [ ( u M 4 ) · cos ( u M 4 ) sin ( u M 4 ) ] { ( u M 4 ) } 2

Metrics