Abstract

A highly birefringent photonic crystal fibre has been characterised as a function of temperature. The modal birefringence has been found to be independent of temperature from -25 to 800 °C.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ortigosa-Blanche, J.C. Knight, W.J. Wadsworth, J. Arriaga, B.J. Mangan, T.A. Birks, and P.St.J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25, 1325–1327 (2000).
    [Crossref]
  2. J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Ligthwave Technol. 4, 1071–1089 (1986).
    [Crossref]
  3. A.J. Barlow and D.N. Payne, “The stress-optic effect in optical fibres,” IEEE J. Quantum Electron. QE-19 (5), 834–839 (1983).
    [Crossref]
  4. M.D. Nielsen, G. Vienne, J.R. Jensen, and A. Bjarklev, “Modelling birefringence in isolated elliptical core photonic crystal fibers,” LEOS (San Diego, USA, 2001).
  5. J.R. Folkenberg, M.D. Nielsen, N.A. Mortensen, C. Jakobsen, and H.R. Simonsen, “Polarization maintaining large mode area photonic crystal fiber,” Opt. Express 12, 956–960 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-956
    [Crossref] [PubMed]
  6. P.R. Chaudhuri, V. Paulose, C. Zhao, and C. Lu, “Near-elliptical core polarization maintaining photonic crystal fiber: modeling birefringence characteristics and realization,” Photon. Technol. Lett. 16, 1301–1303 (2004).
    [Crossref]
  7. N. Issa, M. A. van Eijkelenborg, M. Fellew, F. Cox, G. Henry, and M.C.J. Large, “Fabrication and study of microstructured optical fibers with elliptical holes,” Opt. Lett. 29, 1336–8 (2004).
    [Crossref] [PubMed]
  8. K. Saitoh and M. Koshiba, “Single-Polarization Single-Mode Photonic Crystal fibers,” Photon. Technol. Lett. 15, 1384–1386 (2003).
    [Crossref]
  9. H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, “Absolutely Single Polarization Photonic Crystal Fiber,” Photon. Technol. Lett. 16, 182–184 (2004).
    [Crossref]
  10. I. Bassett, M. Bjarme, D. Chan, I. Clarke, J. Digweed, T. Ryan, A. Michie, and D. Wong, “Elliptically polarizing optical fiber,” SPIE-Int. Soc. Opt. Eng. Proceedings of Spie - the International Society for Optical Engineering 3860, 501–6 (1999).
  11. F. Mohr and F. Schadt, “Bias error in fiber optic gyroscopes due to elastooptic interactions in the sensor fiber,” EWOFS, Spain, SPIE 5502, 410–412 (2004).
  12. M. Szpulak, T. Martynkien, and W. Urbanczyk, “Effects of hydrostatic pressure on phase and group birefringence in microstructured holey fibers,” Appl. Opt. 43, 4739–4744 (2004).
    [Crossref] [PubMed]
  13. M. Szpulak, T. Martynkien, W. Urbanczyk, J. Wojcik, and W.J. Bock, “Temperature sensitivity of photonic crystal holey fibers,” Bellingham, Wash, SPIE 5028, 108–114 (2002).
  14. M. Szpulak, T. Martynkien, W. Urbanczyk, J. Wojcik, and W.J. Bock, “Influence of temperature on birefringence and polarization mode dispersion in photonic crystal fibers,” Proceedings of 4th International Conference on Transparent Optical Networks and 1st European Symposium on Photonic Crystals, Warsaw, 2, (April 21–25, 2002) pp. 89–92.
  15. K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “Optical properties of a low-loss polarization-maintaining photonic crystal fiber,” Opt. Express 9, 676–680 (2001). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-676
    [Crossref] [PubMed]
  16. T.A. Birks, J.C. Knight, and P.S.J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
    [Crossref] [PubMed]
  17. M.J. Steel and R.M. Osgood, “Polarisation and dispersion properties of elliptical-hole photonic crystal fibers,” J. Lightwave Technol. 19, 495–503 (2001).
    [Crossref]
  18. A. Ortigosa-Blanch, A. Diez, M. Delgado-Pinar, J.L. Cruz, and M.V. Andres, “Ultrahigh Birefringent Nonlinear Microstructured Fiber,” Photon. Technol. Lett. 16, 1667–1669 (2004).
    [Crossref]

2004 (7)

P.R. Chaudhuri, V. Paulose, C. Zhao, and C. Lu, “Near-elliptical core polarization maintaining photonic crystal fiber: modeling birefringence characteristics and realization,” Photon. Technol. Lett. 16, 1301–1303 (2004).
[Crossref]

H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, “Absolutely Single Polarization Photonic Crystal Fiber,” Photon. Technol. Lett. 16, 182–184 (2004).
[Crossref]

F. Mohr and F. Schadt, “Bias error in fiber optic gyroscopes due to elastooptic interactions in the sensor fiber,” EWOFS, Spain, SPIE 5502, 410–412 (2004).

A. Ortigosa-Blanch, A. Diez, M. Delgado-Pinar, J.L. Cruz, and M.V. Andres, “Ultrahigh Birefringent Nonlinear Microstructured Fiber,” Photon. Technol. Lett. 16, 1667–1669 (2004).
[Crossref]

J.R. Folkenberg, M.D. Nielsen, N.A. Mortensen, C. Jakobsen, and H.R. Simonsen, “Polarization maintaining large mode area photonic crystal fiber,” Opt. Express 12, 956–960 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-956
[Crossref] [PubMed]

N. Issa, M. A. van Eijkelenborg, M. Fellew, F. Cox, G. Henry, and M.C.J. Large, “Fabrication and study of microstructured optical fibers with elliptical holes,” Opt. Lett. 29, 1336–8 (2004).
[Crossref] [PubMed]

M. Szpulak, T. Martynkien, and W. Urbanczyk, “Effects of hydrostatic pressure on phase and group birefringence in microstructured holey fibers,” Appl. Opt. 43, 4739–4744 (2004).
[Crossref] [PubMed]

2003 (1)

K. Saitoh and M. Koshiba, “Single-Polarization Single-Mode Photonic Crystal fibers,” Photon. Technol. Lett. 15, 1384–1386 (2003).
[Crossref]

2002 (1)

M. Szpulak, T. Martynkien, W. Urbanczyk, J. Wojcik, and W.J. Bock, “Temperature sensitivity of photonic crystal holey fibers,” Bellingham, Wash, SPIE 5028, 108–114 (2002).

2001 (2)

2000 (1)

1999 (1)

I. Bassett, M. Bjarme, D. Chan, I. Clarke, J. Digweed, T. Ryan, A. Michie, and D. Wong, “Elliptically polarizing optical fiber,” SPIE-Int. Soc. Opt. Eng. Proceedings of Spie - the International Society for Optical Engineering 3860, 501–6 (1999).

1997 (1)

1986 (1)

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Ligthwave Technol. 4, 1071–1089 (1986).
[Crossref]

1983 (1)

A.J. Barlow and D.N. Payne, “The stress-optic effect in optical fibres,” IEEE J. Quantum Electron. QE-19 (5), 834–839 (1983).
[Crossref]

Andres, M.V.

A. Ortigosa-Blanch, A. Diez, M. Delgado-Pinar, J.L. Cruz, and M.V. Andres, “Ultrahigh Birefringent Nonlinear Microstructured Fiber,” Photon. Technol. Lett. 16, 1667–1669 (2004).
[Crossref]

Arriaga, J.

Barlow, A.J.

A.J. Barlow and D.N. Payne, “The stress-optic effect in optical fibres,” IEEE J. Quantum Electron. QE-19 (5), 834–839 (1983).
[Crossref]

Bassett, I.

I. Bassett, M. Bjarme, D. Chan, I. Clarke, J. Digweed, T. Ryan, A. Michie, and D. Wong, “Elliptically polarizing optical fiber,” SPIE-Int. Soc. Opt. Eng. Proceedings of Spie - the International Society for Optical Engineering 3860, 501–6 (1999).

Birks, T.A.

Bjarklev, A.

M.D. Nielsen, G. Vienne, J.R. Jensen, and A. Bjarklev, “Modelling birefringence in isolated elliptical core photonic crystal fibers,” LEOS (San Diego, USA, 2001).

Bjarme, M.

I. Bassett, M. Bjarme, D. Chan, I. Clarke, J. Digweed, T. Ryan, A. Michie, and D. Wong, “Elliptically polarizing optical fiber,” SPIE-Int. Soc. Opt. Eng. Proceedings of Spie - the International Society for Optical Engineering 3860, 501–6 (1999).

Bock, W.J.

M. Szpulak, T. Martynkien, W. Urbanczyk, J. Wojcik, and W.J. Bock, “Temperature sensitivity of photonic crystal holey fibers,” Bellingham, Wash, SPIE 5028, 108–114 (2002).

M. Szpulak, T. Martynkien, W. Urbanczyk, J. Wojcik, and W.J. Bock, “Influence of temperature on birefringence and polarization mode dispersion in photonic crystal fibers,” Proceedings of 4th International Conference on Transparent Optical Networks and 1st European Symposium on Photonic Crystals, Warsaw, 2, (April 21–25, 2002) pp. 89–92.

Chan, D.

I. Bassett, M. Bjarme, D. Chan, I. Clarke, J. Digweed, T. Ryan, A. Michie, and D. Wong, “Elliptically polarizing optical fiber,” SPIE-Int. Soc. Opt. Eng. Proceedings of Spie - the International Society for Optical Engineering 3860, 501–6 (1999).

Chaudhuri, P.R.

P.R. Chaudhuri, V. Paulose, C. Zhao, and C. Lu, “Near-elliptical core polarization maintaining photonic crystal fiber: modeling birefringence characteristics and realization,” Photon. Technol. Lett. 16, 1301–1303 (2004).
[Crossref]

Clarke, I.

I. Bassett, M. Bjarme, D. Chan, I. Clarke, J. Digweed, T. Ryan, A. Michie, and D. Wong, “Elliptically polarizing optical fiber,” SPIE-Int. Soc. Opt. Eng. Proceedings of Spie - the International Society for Optical Engineering 3860, 501–6 (1999).

Cox, F.

Cruz, J.L.

A. Ortigosa-Blanch, A. Diez, M. Delgado-Pinar, J.L. Cruz, and M.V. Andres, “Ultrahigh Birefringent Nonlinear Microstructured Fiber,” Photon. Technol. Lett. 16, 1667–1669 (2004).
[Crossref]

Delgado-Pinar, M.

A. Ortigosa-Blanch, A. Diez, M. Delgado-Pinar, J.L. Cruz, and M.V. Andres, “Ultrahigh Birefringent Nonlinear Microstructured Fiber,” Photon. Technol. Lett. 16, 1667–1669 (2004).
[Crossref]

Diez, A.

A. Ortigosa-Blanch, A. Diez, M. Delgado-Pinar, J.L. Cruz, and M.V. Andres, “Ultrahigh Birefringent Nonlinear Microstructured Fiber,” Photon. Technol. Lett. 16, 1667–1669 (2004).
[Crossref]

Digweed, J.

I. Bassett, M. Bjarme, D. Chan, I. Clarke, J. Digweed, T. Ryan, A. Michie, and D. Wong, “Elliptically polarizing optical fiber,” SPIE-Int. Soc. Opt. Eng. Proceedings of Spie - the International Society for Optical Engineering 3860, 501–6 (1999).

Fellew, M.

Folkenberg, J.R.

Fujita, M.

Henry, G.

Issa, N.

Jakobsen, C.

Jensen, J.R.

M.D. Nielsen, G. Vienne, J.R. Jensen, and A. Bjarklev, “Modelling birefringence in isolated elliptical core photonic crystal fibers,” LEOS (San Diego, USA, 2001).

Kawanishi, S.

Knight, J.C.

Koshiba, M.

K. Saitoh and M. Koshiba, “Single-Polarization Single-Mode Photonic Crystal fibers,” Photon. Technol. Lett. 15, 1384–1386 (2003).
[Crossref]

Koyanagi, S.

H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, “Absolutely Single Polarization Photonic Crystal Fiber,” Photon. Technol. Lett. 16, 182–184 (2004).
[Crossref]

Kubota, H.

Large, M.C.J.

Lu, C.

P.R. Chaudhuri, V. Paulose, C. Zhao, and C. Lu, “Near-elliptical core polarization maintaining photonic crystal fiber: modeling birefringence characteristics and realization,” Photon. Technol. Lett. 16, 1301–1303 (2004).
[Crossref]

Mangan, B.J.

Martynkien, T.

M. Szpulak, T. Martynkien, and W. Urbanczyk, “Effects of hydrostatic pressure on phase and group birefringence in microstructured holey fibers,” Appl. Opt. 43, 4739–4744 (2004).
[Crossref] [PubMed]

M. Szpulak, T. Martynkien, W. Urbanczyk, J. Wojcik, and W.J. Bock, “Temperature sensitivity of photonic crystal holey fibers,” Bellingham, Wash, SPIE 5028, 108–114 (2002).

M. Szpulak, T. Martynkien, W. Urbanczyk, J. Wojcik, and W.J. Bock, “Influence of temperature on birefringence and polarization mode dispersion in photonic crystal fibers,” Proceedings of 4th International Conference on Transparent Optical Networks and 1st European Symposium on Photonic Crystals, Warsaw, 2, (April 21–25, 2002) pp. 89–92.

Michie, A.

I. Bassett, M. Bjarme, D. Chan, I. Clarke, J. Digweed, T. Ryan, A. Michie, and D. Wong, “Elliptically polarizing optical fiber,” SPIE-Int. Soc. Opt. Eng. Proceedings of Spie - the International Society for Optical Engineering 3860, 501–6 (1999).

Mohr, F.

F. Mohr and F. Schadt, “Bias error in fiber optic gyroscopes due to elastooptic interactions in the sensor fiber,” EWOFS, Spain, SPIE 5502, 410–412 (2004).

Mortensen, N.A.

Nielsen, M.D.

Noda, J.

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Ligthwave Technol. 4, 1071–1089 (1986).
[Crossref]

Okamoto, K.

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Ligthwave Technol. 4, 1071–1089 (1986).
[Crossref]

Ortigosa-Blanch, A.

A. Ortigosa-Blanch, A. Diez, M. Delgado-Pinar, J.L. Cruz, and M.V. Andres, “Ultrahigh Birefringent Nonlinear Microstructured Fiber,” Photon. Technol. Lett. 16, 1667–1669 (2004).
[Crossref]

Ortigosa-Blanche, A.

Osgood, R.M.

Paulose, V.

P.R. Chaudhuri, V. Paulose, C. Zhao, and C. Lu, “Near-elliptical core polarization maintaining photonic crystal fiber: modeling birefringence characteristics and realization,” Photon. Technol. Lett. 16, 1301–1303 (2004).
[Crossref]

Payne, D.N.

A.J. Barlow and D.N. Payne, “The stress-optic effect in optical fibres,” IEEE J. Quantum Electron. QE-19 (5), 834–839 (1983).
[Crossref]

Russell, P.S.J.

Russell, P.St.J.

Ryan, T.

I. Bassett, M. Bjarme, D. Chan, I. Clarke, J. Digweed, T. Ryan, A. Michie, and D. Wong, “Elliptically polarizing optical fiber,” SPIE-Int. Soc. Opt. Eng. Proceedings of Spie - the International Society for Optical Engineering 3860, 501–6 (1999).

Saitoh, K.

K. Saitoh and M. Koshiba, “Single-Polarization Single-Mode Photonic Crystal fibers,” Photon. Technol. Lett. 15, 1384–1386 (2003).
[Crossref]

Sasaki, Y.

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Ligthwave Technol. 4, 1071–1089 (1986).
[Crossref]

Schadt, F.

F. Mohr and F. Schadt, “Bias error in fiber optic gyroscopes due to elastooptic interactions in the sensor fiber,” EWOFS, Spain, SPIE 5502, 410–412 (2004).

Simonsen, H.R.

Steel, M.J.

Suzuki, K.

Szpulak, M.

M. Szpulak, T. Martynkien, and W. Urbanczyk, “Effects of hydrostatic pressure on phase and group birefringence in microstructured holey fibers,” Appl. Opt. 43, 4739–4744 (2004).
[Crossref] [PubMed]

M. Szpulak, T. Martynkien, W. Urbanczyk, J. Wojcik, and W.J. Bock, “Temperature sensitivity of photonic crystal holey fibers,” Bellingham, Wash, SPIE 5028, 108–114 (2002).

M. Szpulak, T. Martynkien, W. Urbanczyk, J. Wojcik, and W.J. Bock, “Influence of temperature on birefringence and polarization mode dispersion in photonic crystal fibers,” Proceedings of 4th International Conference on Transparent Optical Networks and 1st European Symposium on Photonic Crystals, Warsaw, 2, (April 21–25, 2002) pp. 89–92.

Tanaka, M.

Urbanczyk, W.

M. Szpulak, T. Martynkien, and W. Urbanczyk, “Effects of hydrostatic pressure on phase and group birefringence in microstructured holey fibers,” Appl. Opt. 43, 4739–4744 (2004).
[Crossref] [PubMed]

M. Szpulak, T. Martynkien, W. Urbanczyk, J. Wojcik, and W.J. Bock, “Temperature sensitivity of photonic crystal holey fibers,” Bellingham, Wash, SPIE 5028, 108–114 (2002).

M. Szpulak, T. Martynkien, W. Urbanczyk, J. Wojcik, and W.J. Bock, “Influence of temperature on birefringence and polarization mode dispersion in photonic crystal fibers,” Proceedings of 4th International Conference on Transparent Optical Networks and 1st European Symposium on Photonic Crystals, Warsaw, 2, (April 21–25, 2002) pp. 89–92.

van Eijkelenborg, M. A.

Vienne, G.

M.D. Nielsen, G. Vienne, J.R. Jensen, and A. Bjarklev, “Modelling birefringence in isolated elliptical core photonic crystal fibers,” LEOS (San Diego, USA, 2001).

Wadsworth, W.J.

Wojcik, J.

M. Szpulak, T. Martynkien, W. Urbanczyk, J. Wojcik, and W.J. Bock, “Temperature sensitivity of photonic crystal holey fibers,” Bellingham, Wash, SPIE 5028, 108–114 (2002).

M. Szpulak, T. Martynkien, W. Urbanczyk, J. Wojcik, and W.J. Bock, “Influence of temperature on birefringence and polarization mode dispersion in photonic crystal fibers,” Proceedings of 4th International Conference on Transparent Optical Networks and 1st European Symposium on Photonic Crystals, Warsaw, 2, (April 21–25, 2002) pp. 89–92.

Wong, D.

I. Bassett, M. Bjarme, D. Chan, I. Clarke, J. Digweed, T. Ryan, A. Michie, and D. Wong, “Elliptically polarizing optical fiber,” SPIE-Int. Soc. Opt. Eng. Proceedings of Spie - the International Society for Optical Engineering 3860, 501–6 (1999).

Yamaguchi, S.

H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, “Absolutely Single Polarization Photonic Crystal Fiber,” Photon. Technol. Lett. 16, 182–184 (2004).
[Crossref]

Zhao, C.

P.R. Chaudhuri, V. Paulose, C. Zhao, and C. Lu, “Near-elliptical core polarization maintaining photonic crystal fiber: modeling birefringence characteristics and realization,” Photon. Technol. Lett. 16, 1301–1303 (2004).
[Crossref]

Appl. Opt. (1)

Bellingham, Wash, SPIE (1)

M. Szpulak, T. Martynkien, W. Urbanczyk, J. Wojcik, and W.J. Bock, “Temperature sensitivity of photonic crystal holey fibers,” Bellingham, Wash, SPIE 5028, 108–114 (2002).

EWOFS, Spain, SPIE (1)

F. Mohr and F. Schadt, “Bias error in fiber optic gyroscopes due to elastooptic interactions in the sensor fiber,” EWOFS, Spain, SPIE 5502, 410–412 (2004).

IEEE J. Quantum Electron. (1)

A.J. Barlow and D.N. Payne, “The stress-optic effect in optical fibres,” IEEE J. Quantum Electron. QE-19 (5), 834–839 (1983).
[Crossref]

J. Lightwave Technol. (1)

J. Ligthwave Technol. (1)

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Ligthwave Technol. 4, 1071–1089 (1986).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Photon. Technol. Lett. (4)

K. Saitoh and M. Koshiba, “Single-Polarization Single-Mode Photonic Crystal fibers,” Photon. Technol. Lett. 15, 1384–1386 (2003).
[Crossref]

H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, “Absolutely Single Polarization Photonic Crystal Fiber,” Photon. Technol. Lett. 16, 182–184 (2004).
[Crossref]

A. Ortigosa-Blanch, A. Diez, M. Delgado-Pinar, J.L. Cruz, and M.V. Andres, “Ultrahigh Birefringent Nonlinear Microstructured Fiber,” Photon. Technol. Lett. 16, 1667–1669 (2004).
[Crossref]

P.R. Chaudhuri, V. Paulose, C. Zhao, and C. Lu, “Near-elliptical core polarization maintaining photonic crystal fiber: modeling birefringence characteristics and realization,” Photon. Technol. Lett. 16, 1301–1303 (2004).
[Crossref]

SPIE-Int. Soc. Opt. Eng. Proceedings of Spie - the International Society for Optical Engineering (1)

I. Bassett, M. Bjarme, D. Chan, I. Clarke, J. Digweed, T. Ryan, A. Michie, and D. Wong, “Elliptically polarizing optical fiber,” SPIE-Int. Soc. Opt. Eng. Proceedings of Spie - the International Society for Optical Engineering 3860, 501–6 (1999).

Other (2)

M.D. Nielsen, G. Vienne, J.R. Jensen, and A. Bjarklev, “Modelling birefringence in isolated elliptical core photonic crystal fibers,” LEOS (San Diego, USA, 2001).

M. Szpulak, T. Martynkien, W. Urbanczyk, J. Wojcik, and W.J. Bock, “Influence of temperature on birefringence and polarization mode dispersion in photonic crystal fibers,” Proceedings of 4th International Conference on Transparent Optical Networks and 1st European Symposium on Photonic Crystals, Warsaw, 2, (April 21–25, 2002) pp. 89–92.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

SEM image of the cross-section of the fibre.

Fig. 2.
Fig. 2.

Experimental setup.

Fig. 3.
Fig. 3.

Typical interferogram as measured on the optical spectrum analyzer.

Fig. 4.
Fig. 4.

Temperature dependence of modal birefringence for a bow-tie fibre and HiBi-PCF.

Fig. 5.
Fig. 5.

Measured group birefringence and calculated modal birefringence as a function of wavelength for a bow-tie fibre and HiBi-PCF (measurements made @ 25°C).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

B = n x n y ,
( λd B ( λ ) B ( λ ) ) = λ 2 2 L Δ λ = B g ,
B g = α ( k 1 ) λ k
B = B g ( k 1 )

Metrics