Abstract

In this paper, we introduce a hybrid three-dimensional photonic-crystal cavity with an embedded quantum dot, and investigate the dynamics of the cavity-quantum dot system. The general procedure of modelling such a practical structure is presented, where the master equation is solved on the basis of the parameters obtained from defect mode analyses. According to our study, this structure can be engineered to achieve a nearly deterministic single photon gun. The excitation power is found to have an optimal value in terms of photon emission efficiency. Large excitation pulse duration is believed to cause a spurious peak in the second-order coherence measurement.

© 2004 Optical Society of America

Full Article  |  PDF Article
Related Articles
High performance single photon sources from photolithographically defined pillar microcavities

A. J. Bennett, D. C. Unitt, P. Atkinson, D. A. Ritchie, and A. J. Shields
Opt. Express 13(1) 50-55 (2005)

Single quantum dot controlled lasing effects in high-Q micropillar cavities

S. Reitzenstein, C. Böckler, A. Bazhenov, A. Gorbunov, A. Löffler, M. Kamp, V.D. Kulakovskii, and A. Forchel
Opt. Express 16(7) 4848-4857 (2008)

Cavity mode emission in weakly coupled quantum dot - cavity systems

T Tawara, H. Kamada, S. Hughes, H. Okamoto, M. Notomi, and T. Sogawa
Opt. Express 17(8) 6643-6654 (2009)

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phy. Rev. Lett. 58, 2059 (1987).
    [Crossref]
  2. O. Painter, R.K. Lee, A. Scherer, A. Yariv, J.D. O’Brien, P.D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819 (1999).
    [Crossref] [PubMed]
  3. M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G.S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
    [Crossref] [PubMed]
  4. C. Santori, D. Fattal, J. Vuckovic, and G.S. Solomon, “Indistinguishable photons from a single-photon device,” Nature 419, 594 (2002).
    [Crossref] [PubMed]
  5. H. Kimble, “Structures and dynamics,” in cavity quantum electrodynamics, P Berman, ed. (Academic press,1994)
  6. O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84, 2513 (2000).
    [Crossref] [PubMed]
  7. J. Vuckovic and Y. Yamamoto, “Photonic-crystal microcavities for cavity quantum electrodynamics with a single quantum dot,” Appl. Phys. Lett. 82, 2374 (2003).
    [Crossref]
  8. A. Imamoglu, D. Awschalom, G. Burkard, D.P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204 (1999).
    [Crossref]
  9. M. Pelton, J. Vuckovic, G. Solomon, A. Scherer, and Y. Yamamoto, “Three-dimensionally confined modes in micropost microcavities: quality factors and Purcell factors,” IEEE J. Quantum. Electron. 38, 170 (2002).
    [Crossref]
  10. O. Painter, J. Vuckovic, and A. Scherer, “Defect modes of a two-dimensional photonic-crystal in an optically thin dielectric slab,” J. Opt. Soc. Am. B 16, 275 (1999).
    [Crossref]
  11. C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86, 1502–1505 (2001).
    [Crossref] [PubMed]
  12. G. Solomon, M. Pelton, and Y. Yamamoto, “Single-mode spontaneous emission from a single quantum dot in a three-dimensional microcavity,” Phys. Rev. Lett. 86, 3903 (2001).
    [Crossref] [PubMed]
  13. A. Kiraz, C. Reese, B. Gayral, L. Zhang, W. Schoenfeld, B. Gerardot, P. Petroff, E. Hu, and A. Imamoglu, “Cavity-quantum electrodynamics with quantum dots,” J. Opt. B 5, 129 (2003).
    [Crossref]
  14. J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Design of photonic-crystal microcavities for cavity QED,” Phys. Rev. E 65, 016608 (2001).
    [Crossref]
  15. J. Vuckovic, M. Pelton, A. Scherer, and Y. Yamamoto, “Optimization of three-dimensional micropost microcavities for cavity quantum electrodynamics,” Phys. Rev. A 66, 023808 (2002).
    [Crossref]
  16. S. Guo and S. Albin, “Numerical techniques for excitation and analysis of defect modes in photonic-crystals,” Opt. Express 11, 1080 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-9-1080.
    [Crossref] [PubMed]
  17. D. Walls and G. Milburn, Quantum Optics (Springer,1994).
  18. C.K. Law and H.J. Kimble, “Deterministic generation of a bit-stream of single-photon pulses,” J. Mod. Opt. 44, 2067 (1997).
  19. M.B. Plenio and P.L. Knight, “The quantum-jump approach to dissipative dynamics in quantum optics,” Rev. Mod. Phys. 70, 101 (1998).
    [Crossref]
  20. E. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  21. J.M. Gerard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110 (1998).
    [Crossref]
  22. J. Gerard and B. Gayral, “Strong Purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities,” J. Light. Tech. 17, 2089 (1999).
    [Crossref]
  23. Ph. Lalanne, S. Mias, and J.P. Hugonin, “Two physical mechanisms for boosting the quality factor to cavity volume ratio of photonic-crystal microcavities,” Opt. Express 12, 458 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-458.
    [Crossref] [PubMed]
  24. S. Johnson, S. Fan, A. Mekis, and J. Joannopoulos, “Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap,” Appl. Phys. Lett. 78, 3388 (2001).
    [Crossref]
  25. P. Grangier, G. Reymond, and Schlosser, “Implementations of quantum computing using cavity quantum electrodynamics schemes,” Fortschr. Phys. 48, 859 (2000).
    [Crossref]

2004 (1)

2003 (3)

J. Vuckovic and Y. Yamamoto, “Photonic-crystal microcavities for cavity quantum electrodynamics with a single quantum dot,” Appl. Phys. Lett. 82, 2374 (2003).
[Crossref]

A. Kiraz, C. Reese, B. Gayral, L. Zhang, W. Schoenfeld, B. Gerardot, P. Petroff, E. Hu, and A. Imamoglu, “Cavity-quantum electrodynamics with quantum dots,” J. Opt. B 5, 129 (2003).
[Crossref]

S. Guo and S. Albin, “Numerical techniques for excitation and analysis of defect modes in photonic-crystals,” Opt. Express 11, 1080 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-9-1080.
[Crossref] [PubMed]

2002 (4)

M. Pelton, J. Vuckovic, G. Solomon, A. Scherer, and Y. Yamamoto, “Three-dimensionally confined modes in micropost microcavities: quality factors and Purcell factors,” IEEE J. Quantum. Electron. 38, 170 (2002).
[Crossref]

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G.S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref] [PubMed]

C. Santori, D. Fattal, J. Vuckovic, and G.S. Solomon, “Indistinguishable photons from a single-photon device,” Nature 419, 594 (2002).
[Crossref] [PubMed]

J. Vuckovic, M. Pelton, A. Scherer, and Y. Yamamoto, “Optimization of three-dimensional micropost microcavities for cavity quantum electrodynamics,” Phys. Rev. A 66, 023808 (2002).
[Crossref]

2001 (4)

S. Johnson, S. Fan, A. Mekis, and J. Joannopoulos, “Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap,” Appl. Phys. Lett. 78, 3388 (2001).
[Crossref]

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Design of photonic-crystal microcavities for cavity QED,” Phys. Rev. E 65, 016608 (2001).
[Crossref]

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86, 1502–1505 (2001).
[Crossref] [PubMed]

G. Solomon, M. Pelton, and Y. Yamamoto, “Single-mode spontaneous emission from a single quantum dot in a three-dimensional microcavity,” Phys. Rev. Lett. 86, 3903 (2001).
[Crossref] [PubMed]

2000 (2)

O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84, 2513 (2000).
[Crossref] [PubMed]

P. Grangier, G. Reymond, and Schlosser, “Implementations of quantum computing using cavity quantum electrodynamics schemes,” Fortschr. Phys. 48, 859 (2000).
[Crossref]

1999 (4)

J. Gerard and B. Gayral, “Strong Purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities,” J. Light. Tech. 17, 2089 (1999).
[Crossref]

O. Painter, R.K. Lee, A. Scherer, A. Yariv, J.D. O’Brien, P.D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819 (1999).
[Crossref] [PubMed]

O. Painter, J. Vuckovic, and A. Scherer, “Defect modes of a two-dimensional photonic-crystal in an optically thin dielectric slab,” J. Opt. Soc. Am. B 16, 275 (1999).
[Crossref]

A. Imamoglu, D. Awschalom, G. Burkard, D.P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204 (1999).
[Crossref]

1998 (2)

M.B. Plenio and P.L. Knight, “The quantum-jump approach to dissipative dynamics in quantum optics,” Rev. Mod. Phys. 70, 101 (1998).
[Crossref]

J.M. Gerard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110 (1998).
[Crossref]

1997 (1)

C.K. Law and H.J. Kimble, “Deterministic generation of a bit-stream of single-photon pulses,” J. Mod. Opt. 44, 2067 (1997).

1987 (1)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phy. Rev. Lett. 58, 2059 (1987).
[Crossref]

1946 (1)

E. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Albin, S.

Awschalom, D.

A. Imamoglu, D. Awschalom, G. Burkard, D.P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204 (1999).
[Crossref]

Benson, O.

O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84, 2513 (2000).
[Crossref] [PubMed]

Burkard, G.

A. Imamoglu, D. Awschalom, G. Burkard, D.P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204 (1999).
[Crossref]

Costard, E.

J.M. Gerard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110 (1998).
[Crossref]

Dale, Y.

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86, 1502–1505 (2001).
[Crossref] [PubMed]

Dapkus, P.D.

O. Painter, R.K. Lee, A. Scherer, A. Yariv, J.D. O’Brien, P.D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819 (1999).
[Crossref] [PubMed]

DiVincenzo, D.P.

A. Imamoglu, D. Awschalom, G. Burkard, D.P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204 (1999).
[Crossref]

Fan, S.

S. Johnson, S. Fan, A. Mekis, and J. Joannopoulos, “Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap,” Appl. Phys. Lett. 78, 3388 (2001).
[Crossref]

Fattal, D.

C. Santori, D. Fattal, J. Vuckovic, and G.S. Solomon, “Indistinguishable photons from a single-photon device,” Nature 419, 594 (2002).
[Crossref] [PubMed]

Gayral, B.

A. Kiraz, C. Reese, B. Gayral, L. Zhang, W. Schoenfeld, B. Gerardot, P. Petroff, E. Hu, and A. Imamoglu, “Cavity-quantum electrodynamics with quantum dots,” J. Opt. B 5, 129 (2003).
[Crossref]

J. Gerard and B. Gayral, “Strong Purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities,” J. Light. Tech. 17, 2089 (1999).
[Crossref]

J.M. Gerard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110 (1998).
[Crossref]

Gerard, J.

J. Gerard and B. Gayral, “Strong Purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities,” J. Light. Tech. 17, 2089 (1999).
[Crossref]

Gerard, J.M.

J.M. Gerard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110 (1998).
[Crossref]

Gerardot, B.

A. Kiraz, C. Reese, B. Gayral, L. Zhang, W. Schoenfeld, B. Gerardot, P. Petroff, E. Hu, and A. Imamoglu, “Cavity-quantum electrodynamics with quantum dots,” J. Opt. B 5, 129 (2003).
[Crossref]

Grangier, P.

P. Grangier, G. Reymond, and Schlosser, “Implementations of quantum computing using cavity quantum electrodynamics schemes,” Fortschr. Phys. 48, 859 (2000).
[Crossref]

Guo, S.

Hu, E.

A. Kiraz, C. Reese, B. Gayral, L. Zhang, W. Schoenfeld, B. Gerardot, P. Petroff, E. Hu, and A. Imamoglu, “Cavity-quantum electrodynamics with quantum dots,” J. Opt. B 5, 129 (2003).
[Crossref]

Hugonin, J.P.

Imamoglu, A.

A. Kiraz, C. Reese, B. Gayral, L. Zhang, W. Schoenfeld, B. Gerardot, P. Petroff, E. Hu, and A. Imamoglu, “Cavity-quantum electrodynamics with quantum dots,” J. Opt. B 5, 129 (2003).
[Crossref]

A. Imamoglu, D. Awschalom, G. Burkard, D.P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204 (1999).
[Crossref]

Joannopoulos, J.

S. Johnson, S. Fan, A. Mekis, and J. Joannopoulos, “Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap,” Appl. Phys. Lett. 78, 3388 (2001).
[Crossref]

Johnson, S.

S. Johnson, S. Fan, A. Mekis, and J. Joannopoulos, “Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap,” Appl. Phys. Lett. 78, 3388 (2001).
[Crossref]

Kim, I.

O. Painter, R.K. Lee, A. Scherer, A. Yariv, J.D. O’Brien, P.D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819 (1999).
[Crossref] [PubMed]

Kimble, H.

H. Kimble, “Structures and dynamics,” in cavity quantum electrodynamics, P Berman, ed. (Academic press,1994)

Kimble, H.J.

C.K. Law and H.J. Kimble, “Deterministic generation of a bit-stream of single-photon pulses,” J. Mod. Opt. 44, 2067 (1997).

Kiraz, A.

A. Kiraz, C. Reese, B. Gayral, L. Zhang, W. Schoenfeld, B. Gerardot, P. Petroff, E. Hu, and A. Imamoglu, “Cavity-quantum electrodynamics with quantum dots,” J. Opt. B 5, 129 (2003).
[Crossref]

Knight, P.L.

M.B. Plenio and P.L. Knight, “The quantum-jump approach to dissipative dynamics in quantum optics,” Rev. Mod. Phys. 70, 101 (1998).
[Crossref]

Lalanne, Ph.

Law, C.K.

C.K. Law and H.J. Kimble, “Deterministic generation of a bit-stream of single-photon pulses,” J. Mod. Opt. 44, 2067 (1997).

Lee, R.K.

O. Painter, R.K. Lee, A. Scherer, A. Yariv, J.D. O’Brien, P.D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819 (1999).
[Crossref] [PubMed]

Legrand, B.

J.M. Gerard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110 (1998).
[Crossref]

Loncar, M.

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Design of photonic-crystal microcavities for cavity QED,” Phys. Rev. E 65, 016608 (2001).
[Crossref]

Loss, D.

A. Imamoglu, D. Awschalom, G. Burkard, D.P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204 (1999).
[Crossref]

Mabuchi, H.

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Design of photonic-crystal microcavities for cavity QED,” Phys. Rev. E 65, 016608 (2001).
[Crossref]

Mekis, A.

S. Johnson, S. Fan, A. Mekis, and J. Joannopoulos, “Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap,” Appl. Phys. Lett. 78, 3388 (2001).
[Crossref]

Mias, S.

Milburn, G.

D. Walls and G. Milburn, Quantum Optics (Springer,1994).

O’Brien, J.D.

O. Painter, R.K. Lee, A. Scherer, A. Yariv, J.D. O’Brien, P.D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819 (1999).
[Crossref] [PubMed]

Painter, O.

O. Painter, R.K. Lee, A. Scherer, A. Yariv, J.D. O’Brien, P.D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819 (1999).
[Crossref] [PubMed]

O. Painter, J. Vuckovic, and A. Scherer, “Defect modes of a two-dimensional photonic-crystal in an optically thin dielectric slab,” J. Opt. Soc. Am. B 16, 275 (1999).
[Crossref]

Pelton, M.

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G.S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref] [PubMed]

M. Pelton, J. Vuckovic, G. Solomon, A. Scherer, and Y. Yamamoto, “Three-dimensionally confined modes in micropost microcavities: quality factors and Purcell factors,” IEEE J. Quantum. Electron. 38, 170 (2002).
[Crossref]

J. Vuckovic, M. Pelton, A. Scherer, and Y. Yamamoto, “Optimization of three-dimensional micropost microcavities for cavity quantum electrodynamics,” Phys. Rev. A 66, 023808 (2002).
[Crossref]

G. Solomon, M. Pelton, and Y. Yamamoto, “Single-mode spontaneous emission from a single quantum dot in a three-dimensional microcavity,” Phys. Rev. Lett. 86, 3903 (2001).
[Crossref] [PubMed]

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86, 1502–1505 (2001).
[Crossref] [PubMed]

O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84, 2513 (2000).
[Crossref] [PubMed]

Petroff, P.

A. Kiraz, C. Reese, B. Gayral, L. Zhang, W. Schoenfeld, B. Gerardot, P. Petroff, E. Hu, and A. Imamoglu, “Cavity-quantum electrodynamics with quantum dots,” J. Opt. B 5, 129 (2003).
[Crossref]

Plant, J.

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G.S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref] [PubMed]

Plenio, M.B.

M.B. Plenio and P.L. Knight, “The quantum-jump approach to dissipative dynamics in quantum optics,” Rev. Mod. Phys. 70, 101 (1998).
[Crossref]

Purcell, E.

E. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Reese, C.

A. Kiraz, C. Reese, B. Gayral, L. Zhang, W. Schoenfeld, B. Gerardot, P. Petroff, E. Hu, and A. Imamoglu, “Cavity-quantum electrodynamics with quantum dots,” J. Opt. B 5, 129 (2003).
[Crossref]

Reymond, G.

P. Grangier, G. Reymond, and Schlosser, “Implementations of quantum computing using cavity quantum electrodynamics schemes,” Fortschr. Phys. 48, 859 (2000).
[Crossref]

Santori, C.

C. Santori, D. Fattal, J. Vuckovic, and G.S. Solomon, “Indistinguishable photons from a single-photon device,” Nature 419, 594 (2002).
[Crossref] [PubMed]

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G.S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref] [PubMed]

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86, 1502–1505 (2001).
[Crossref] [PubMed]

O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84, 2513 (2000).
[Crossref] [PubMed]

Scherer, A.

M. Pelton, J. Vuckovic, G. Solomon, A. Scherer, and Y. Yamamoto, “Three-dimensionally confined modes in micropost microcavities: quality factors and Purcell factors,” IEEE J. Quantum. Electron. 38, 170 (2002).
[Crossref]

J. Vuckovic, M. Pelton, A. Scherer, and Y. Yamamoto, “Optimization of three-dimensional micropost microcavities for cavity quantum electrodynamics,” Phys. Rev. A 66, 023808 (2002).
[Crossref]

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Design of photonic-crystal microcavities for cavity QED,” Phys. Rev. E 65, 016608 (2001).
[Crossref]

O. Painter, R.K. Lee, A. Scherer, A. Yariv, J.D. O’Brien, P.D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819 (1999).
[Crossref] [PubMed]

O. Painter, J. Vuckovic, and A. Scherer, “Defect modes of a two-dimensional photonic-crystal in an optically thin dielectric slab,” J. Opt. Soc. Am. B 16, 275 (1999).
[Crossref]

Schlosser,

P. Grangier, G. Reymond, and Schlosser, “Implementations of quantum computing using cavity quantum electrodynamics schemes,” Fortschr. Phys. 48, 859 (2000).
[Crossref]

Schoenfeld, W.

A. Kiraz, C. Reese, B. Gayral, L. Zhang, W. Schoenfeld, B. Gerardot, P. Petroff, E. Hu, and A. Imamoglu, “Cavity-quantum electrodynamics with quantum dots,” J. Opt. B 5, 129 (2003).
[Crossref]

Sermage, B.

J.M. Gerard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110 (1998).
[Crossref]

Sherwin, M.

A. Imamoglu, D. Awschalom, G. Burkard, D.P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204 (1999).
[Crossref]

Small, A.

A. Imamoglu, D. Awschalom, G. Burkard, D.P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204 (1999).
[Crossref]

Solomon, G.

M. Pelton, J. Vuckovic, G. Solomon, A. Scherer, and Y. Yamamoto, “Three-dimensionally confined modes in micropost microcavities: quality factors and Purcell factors,” IEEE J. Quantum. Electron. 38, 170 (2002).
[Crossref]

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86, 1502–1505 (2001).
[Crossref] [PubMed]

G. Solomon, M. Pelton, and Y. Yamamoto, “Single-mode spontaneous emission from a single quantum dot in a three-dimensional microcavity,” Phys. Rev. Lett. 86, 3903 (2001).
[Crossref] [PubMed]

Solomon, G.S.

C. Santori, D. Fattal, J. Vuckovic, and G.S. Solomon, “Indistinguishable photons from a single-photon device,” Nature 419, 594 (2002).
[Crossref] [PubMed]

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G.S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref] [PubMed]

Thierry-Mieg, V.

J.M. Gerard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110 (1998).
[Crossref]

Vuckovic, J.

J. Vuckovic and Y. Yamamoto, “Photonic-crystal microcavities for cavity quantum electrodynamics with a single quantum dot,” Appl. Phys. Lett. 82, 2374 (2003).
[Crossref]

M. Pelton, J. Vuckovic, G. Solomon, A. Scherer, and Y. Yamamoto, “Three-dimensionally confined modes in micropost microcavities: quality factors and Purcell factors,” IEEE J. Quantum. Electron. 38, 170 (2002).
[Crossref]

C. Santori, D. Fattal, J. Vuckovic, and G.S. Solomon, “Indistinguishable photons from a single-photon device,” Nature 419, 594 (2002).
[Crossref] [PubMed]

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G.S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref] [PubMed]

J. Vuckovic, M. Pelton, A. Scherer, and Y. Yamamoto, “Optimization of three-dimensional micropost microcavities for cavity quantum electrodynamics,” Phys. Rev. A 66, 023808 (2002).
[Crossref]

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Design of photonic-crystal microcavities for cavity QED,” Phys. Rev. E 65, 016608 (2001).
[Crossref]

O. Painter, J. Vuckovic, and A. Scherer, “Defect modes of a two-dimensional photonic-crystal in an optically thin dielectric slab,” J. Opt. Soc. Am. B 16, 275 (1999).
[Crossref]

Walls, D.

D. Walls and G. Milburn, Quantum Optics (Springer,1994).

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phy. Rev. Lett. 58, 2059 (1987).
[Crossref]

Yamamoto, Y.

J. Vuckovic and Y. Yamamoto, “Photonic-crystal microcavities for cavity quantum electrodynamics with a single quantum dot,” Appl. Phys. Lett. 82, 2374 (2003).
[Crossref]

M. Pelton, J. Vuckovic, G. Solomon, A. Scherer, and Y. Yamamoto, “Three-dimensionally confined modes in micropost microcavities: quality factors and Purcell factors,” IEEE J. Quantum. Electron. 38, 170 (2002).
[Crossref]

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G.S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref] [PubMed]

J. Vuckovic, M. Pelton, A. Scherer, and Y. Yamamoto, “Optimization of three-dimensional micropost microcavities for cavity quantum electrodynamics,” Phys. Rev. A 66, 023808 (2002).
[Crossref]

G. Solomon, M. Pelton, and Y. Yamamoto, “Single-mode spontaneous emission from a single quantum dot in a three-dimensional microcavity,” Phys. Rev. Lett. 86, 3903 (2001).
[Crossref] [PubMed]

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86, 1502–1505 (2001).
[Crossref] [PubMed]

O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84, 2513 (2000).
[Crossref] [PubMed]

Yariv, A.

O. Painter, R.K. Lee, A. Scherer, A. Yariv, J.D. O’Brien, P.D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819 (1999).
[Crossref] [PubMed]

Zhang, B.

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G.S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref] [PubMed]

Zhang, L.

A. Kiraz, C. Reese, B. Gayral, L. Zhang, W. Schoenfeld, B. Gerardot, P. Petroff, E. Hu, and A. Imamoglu, “Cavity-quantum electrodynamics with quantum dots,” J. Opt. B 5, 129 (2003).
[Crossref]

Appl. Phys. Lett. (2)

J. Vuckovic and Y. Yamamoto, “Photonic-crystal microcavities for cavity quantum electrodynamics with a single quantum dot,” Appl. Phys. Lett. 82, 2374 (2003).
[Crossref]

S. Johnson, S. Fan, A. Mekis, and J. Joannopoulos, “Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap,” Appl. Phys. Lett. 78, 3388 (2001).
[Crossref]

Fortschr. Phys. (1)

P. Grangier, G. Reymond, and Schlosser, “Implementations of quantum computing using cavity quantum electrodynamics schemes,” Fortschr. Phys. 48, 859 (2000).
[Crossref]

IEEE J. Quantum. Electron. (1)

M. Pelton, J. Vuckovic, G. Solomon, A. Scherer, and Y. Yamamoto, “Three-dimensionally confined modes in micropost microcavities: quality factors and Purcell factors,” IEEE J. Quantum. Electron. 38, 170 (2002).
[Crossref]

J. Light. Tech. (1)

J. Gerard and B. Gayral, “Strong Purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities,” J. Light. Tech. 17, 2089 (1999).
[Crossref]

J. Mod. Opt. (1)

C.K. Law and H.J. Kimble, “Deterministic generation of a bit-stream of single-photon pulses,” J. Mod. Opt. 44, 2067 (1997).

J. Opt. B (1)

A. Kiraz, C. Reese, B. Gayral, L. Zhang, W. Schoenfeld, B. Gerardot, P. Petroff, E. Hu, and A. Imamoglu, “Cavity-quantum electrodynamics with quantum dots,” J. Opt. B 5, 129 (2003).
[Crossref]

J. Opt. Soc. Am. B (1)

Nature (1)

C. Santori, D. Fattal, J. Vuckovic, and G.S. Solomon, “Indistinguishable photons from a single-photon device,” Nature 419, 594 (2002).
[Crossref] [PubMed]

Opt. Express (2)

Phy. Rev. Lett. (1)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phy. Rev. Lett. 58, 2059 (1987).
[Crossref]

Phys. Rev. (1)

E. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Phys. Rev. A (1)

J. Vuckovic, M. Pelton, A. Scherer, and Y. Yamamoto, “Optimization of three-dimensional micropost microcavities for cavity quantum electrodynamics,” Phys. Rev. A 66, 023808 (2002).
[Crossref]

Phys. Rev. E (1)

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Design of photonic-crystal microcavities for cavity QED,” Phys. Rev. E 65, 016608 (2001).
[Crossref]

Phys. Rev. Lett. (6)

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86, 1502–1505 (2001).
[Crossref] [PubMed]

G. Solomon, M. Pelton, and Y. Yamamoto, “Single-mode spontaneous emission from a single quantum dot in a three-dimensional microcavity,” Phys. Rev. Lett. 86, 3903 (2001).
[Crossref] [PubMed]

A. Imamoglu, D. Awschalom, G. Burkard, D.P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204 (1999).
[Crossref]

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G.S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref] [PubMed]

O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84, 2513 (2000).
[Crossref] [PubMed]

J.M. Gerard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110 (1998).
[Crossref]

Rev. Mod. Phys. (1)

M.B. Plenio and P.L. Knight, “The quantum-jump approach to dissipative dynamics in quantum optics,” Rev. Mod. Phys. 70, 101 (1998).
[Crossref]

Science (1)

O. Painter, R.K. Lee, A. Scherer, A. Yariv, J.D. O’Brien, P.D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819 (1999).
[Crossref] [PubMed]

Other (2)

H. Kimble, “Structures and dynamics,” in cavity quantum electrodynamics, P Berman, ed. (Academic press,1994)

D. Walls and G. Milburn, Quantum Optics (Springer,1994).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

The schematic view of the photonic-crystal. The darker regions represent GaAs, and the brighter ones represent AlAs. Both a complete photonic-crystal (a) and the photonic-crystal cavity (b) are shown.

Fig. 2.
Fig. 2.

Normalized amplitude of Ex of x-dipole mode in the central xy-plane where the quantum dot is located (a) and in a vertical slice with respect to y axis (b). The frequency of the mode is a/λ=0.263. The structural parameters are as follows: p=8a/15, s=16a/15, the refractive index nGaAs=3.57 and nAlAs=2.94.

Fig. 3.
Fig. 3.

The average photon number detected during time interval from 0 to t. The parameters are (g, κ, γ0 , r 0)=(441,1678,0.56,500) GHz and 2T 0=3 ps.

Fig. 4.
Fig. 4.

Dependence of the saturation value p(+∞) on peak pump rate r 0 with 2T 0=3 ps and 6 ps.

Fig. 5.
Fig. 5.

The pulse duration dependence of P max

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

V = ∫∫∫ ε ( r ) E ( r ) 2 d 3 r max [ ε ( r ) E ( r ) 2 ] ,
g = μ ħ ħ ω 2 εV = γ 0 2 V 0 V ,
H = ħ g ( σ a + a σ ) + ħ r ( t ) ( σ + σ ) ,
d dt ρ = i ħ [ H , ρ ] + κ ( 2 a ρ a a ρ a a ) + γ 2 ( 2 σρ σ σ σρ ρσ σ )
P ( t ) 2 κ 0 t a ( τ ) a ( τ ) d τ
r ( t ) = r 0 exp { ( t 3 T 0 ) 2 T 0 2 }
H = H iħκ a a γ 0 2 σ σ .
ψ ( t ) = a 1 ( t ) G , 0 + a 2 ( t ) X , 0 + a 3 ( t ) G , 1 ,
i a ˙ 1 = r ( t ) a 2
i a ˙ 2 = r ( t ) a 1 + g a 3 i γ 0 2 a 2
i a ˙ 3 = g a 2 i κ a 3 ,
a 3 g a 2
a 2 { sin ( r 0 t ) t < T sin ( r 0 T ) exp { ( g 2 κ + γ 0 2 ) t } t T
a 1 i 0 t r ( t ) a 2 ( t ) d t .
P ( t ) 2 κ 0 t a 3 ( t ) 2 d t sin 2 ( r 0 T ) F F + 1 { 1 exp [ ( 2 g 2 κ + γ 0 ) t ] }
P ( t ) g 2 (κ γ 0 )1 t+ sin 2 ( r 0 T )

Metrics