Abstract

An actively Q-switched Er:YAG laser generating pulses at 2.94 μm has been developed and investigated. For a single Er:YAG generator at 3 Hz repetition rate, pulses of 91.2 ns duration and 137 mJ energy have been obtained. It corresponds to pulse train with high-peak power of ~ 1.5 MW. For 10 Hz repetition rate 30 mJ of output energy in single pulse has been achieved. These results, according to our knowledge, are the best world-wide achievements.

© 2004 Optical Society of America

Full Article  |  PDF Article
Related Articles
120-fs terawatt Ti:Al2O3/Cr:LiSrAlF6 laser system

W. E. White, J. R. Hunter, L. Van Woerkom, T. Ditmire, and M. D. Perry
Opt. Lett. 17(15) 1067-1069 (1992)

Sub-20-fs, kilohertz-repetition-rate Ti:sapphire amplifier

M. Lenzner, Ch. Spielmann, E. Wintner, F. Krausz, and A. J. Schmidt
Opt. Lett. 20(12) 1397-1399 (1995)

Multikilohertz Ti:Al2O3 amplifier for high-power femtosecond pulses

François Salin, Gary Vaillancourt, Jeff Squier, and Gérard Mourou
Opt. Lett. 16(24) 1964-1966 (1991)

References

  • View by:
  • |
  • |
  • |

  1. A.D. Zweig, M. Frenz, V. Romano, and H.P. Weber, “A comparative study of laser tissue interaction at 2.94 μm and 10.6 μm,” Appl. Phys. B 47, 259–265 (1988).
    [Crossref]
  2. J.L. Boulnois, “Photophysical processes in recent medical laser developments - review,” Lasers Med. Sci. 1, 47–66 (1986).
    [Crossref]
  3. J.T. Walsh, T.J. Flotte, R.R. Anderson, and T.F. Deutsch, “Pulsed CO2-laser tissue ablation: Effect of tissue type and pulse duration on thermal damage,” Lasers Surg. Med. 8, 108–118 (1988).
    [Crossref] [PubMed]
  4. M. Skorczakowski, P. Nyga, A. Zajac, and W. Zendzian, “2.94 μm Er:YAG laser Q-switched with RTP Pockels cell,” in Proceedings of The European Conference on Lasers and Electro-Optics - CLEO/Europe (Munich, Germany, 2003), paper CA4-04-WEN.
  5. H. Jelinkova, M. Nemec, J. Sulc, M. Cech, and M. Ozolinsh, “Er:YAG laser giant pulse generation,” in A Window on the Laser Medicine World,L. Longo, A.G. Hofstetter, M.-L. Pascu, and W. R. Waidelich, eds., Proc. SPIE4903, 227–232 (2002).
    [Crossref]
  6. F. Konz, M. Frenz, V. Romano, M. Forrer, and H.P. Weber, “Active and passive Q-switching of 2.79 μm Er:Cr:YSGG laser,” Opt. Commun. 103, 398–404 (1993).
    [Crossref]
  7. K.L. Vodopyanov, R. Shori, and O.M. Stafsudd, “Generation of Q-switched Er:YAG laser pulses using evanescent wave absorption in ethanol,” Appl. Phys. Lett. 72, 2211–2213 (1998).
    [Crossref]
  8. W. Koechner, “Solid-State Laser Engineering,” 5th edition (Springer-Verlag, New York, 1999).

1998 (1)

K.L. Vodopyanov, R. Shori, and O.M. Stafsudd, “Generation of Q-switched Er:YAG laser pulses using evanescent wave absorption in ethanol,” Appl. Phys. Lett. 72, 2211–2213 (1998).
[Crossref]

1993 (1)

F. Konz, M. Frenz, V. Romano, M. Forrer, and H.P. Weber, “Active and passive Q-switching of 2.79 μm Er:Cr:YSGG laser,” Opt. Commun. 103, 398–404 (1993).
[Crossref]

1988 (2)

J.T. Walsh, T.J. Flotte, R.R. Anderson, and T.F. Deutsch, “Pulsed CO2-laser tissue ablation: Effect of tissue type and pulse duration on thermal damage,” Lasers Surg. Med. 8, 108–118 (1988).
[Crossref] [PubMed]

A.D. Zweig, M. Frenz, V. Romano, and H.P. Weber, “A comparative study of laser tissue interaction at 2.94 μm and 10.6 μm,” Appl. Phys. B 47, 259–265 (1988).
[Crossref]

1986 (1)

J.L. Boulnois, “Photophysical processes in recent medical laser developments - review,” Lasers Med. Sci. 1, 47–66 (1986).
[Crossref]

Anderson, R.R.

J.T. Walsh, T.J. Flotte, R.R. Anderson, and T.F. Deutsch, “Pulsed CO2-laser tissue ablation: Effect of tissue type and pulse duration on thermal damage,” Lasers Surg. Med. 8, 108–118 (1988).
[Crossref] [PubMed]

Boulnois, J.L.

J.L. Boulnois, “Photophysical processes in recent medical laser developments - review,” Lasers Med. Sci. 1, 47–66 (1986).
[Crossref]

Cech, M.

H. Jelinkova, M. Nemec, J. Sulc, M. Cech, and M. Ozolinsh, “Er:YAG laser giant pulse generation,” in A Window on the Laser Medicine World,L. Longo, A.G. Hofstetter, M.-L. Pascu, and W. R. Waidelich, eds., Proc. SPIE4903, 227–232 (2002).
[Crossref]

Deutsch, T.F.

J.T. Walsh, T.J. Flotte, R.R. Anderson, and T.F. Deutsch, “Pulsed CO2-laser tissue ablation: Effect of tissue type and pulse duration on thermal damage,” Lasers Surg. Med. 8, 108–118 (1988).
[Crossref] [PubMed]

Flotte, T.J.

J.T. Walsh, T.J. Flotte, R.R. Anderson, and T.F. Deutsch, “Pulsed CO2-laser tissue ablation: Effect of tissue type and pulse duration on thermal damage,” Lasers Surg. Med. 8, 108–118 (1988).
[Crossref] [PubMed]

Forrer, M.

F. Konz, M. Frenz, V. Romano, M. Forrer, and H.P. Weber, “Active and passive Q-switching of 2.79 μm Er:Cr:YSGG laser,” Opt. Commun. 103, 398–404 (1993).
[Crossref]

Frenz, M.

F. Konz, M. Frenz, V. Romano, M. Forrer, and H.P. Weber, “Active and passive Q-switching of 2.79 μm Er:Cr:YSGG laser,” Opt. Commun. 103, 398–404 (1993).
[Crossref]

A.D. Zweig, M. Frenz, V. Romano, and H.P. Weber, “A comparative study of laser tissue interaction at 2.94 μm and 10.6 μm,” Appl. Phys. B 47, 259–265 (1988).
[Crossref]

Jelinkova, H.

H. Jelinkova, M. Nemec, J. Sulc, M. Cech, and M. Ozolinsh, “Er:YAG laser giant pulse generation,” in A Window on the Laser Medicine World,L. Longo, A.G. Hofstetter, M.-L. Pascu, and W. R. Waidelich, eds., Proc. SPIE4903, 227–232 (2002).
[Crossref]

Koechner, W.

W. Koechner, “Solid-State Laser Engineering,” 5th edition (Springer-Verlag, New York, 1999).

Konz, F.

F. Konz, M. Frenz, V. Romano, M. Forrer, and H.P. Weber, “Active and passive Q-switching of 2.79 μm Er:Cr:YSGG laser,” Opt. Commun. 103, 398–404 (1993).
[Crossref]

Nemec, M.

H. Jelinkova, M. Nemec, J. Sulc, M. Cech, and M. Ozolinsh, “Er:YAG laser giant pulse generation,” in A Window on the Laser Medicine World,L. Longo, A.G. Hofstetter, M.-L. Pascu, and W. R. Waidelich, eds., Proc. SPIE4903, 227–232 (2002).
[Crossref]

Nyga, P.

M. Skorczakowski, P. Nyga, A. Zajac, and W. Zendzian, “2.94 μm Er:YAG laser Q-switched with RTP Pockels cell,” in Proceedings of The European Conference on Lasers and Electro-Optics - CLEO/Europe (Munich, Germany, 2003), paper CA4-04-WEN.

Ozolinsh, M.

H. Jelinkova, M. Nemec, J. Sulc, M. Cech, and M. Ozolinsh, “Er:YAG laser giant pulse generation,” in A Window on the Laser Medicine World,L. Longo, A.G. Hofstetter, M.-L. Pascu, and W. R. Waidelich, eds., Proc. SPIE4903, 227–232 (2002).
[Crossref]

Romano, V.

F. Konz, M. Frenz, V. Romano, M. Forrer, and H.P. Weber, “Active and passive Q-switching of 2.79 μm Er:Cr:YSGG laser,” Opt. Commun. 103, 398–404 (1993).
[Crossref]

A.D. Zweig, M. Frenz, V. Romano, and H.P. Weber, “A comparative study of laser tissue interaction at 2.94 μm and 10.6 μm,” Appl. Phys. B 47, 259–265 (1988).
[Crossref]

Shori, R.

K.L. Vodopyanov, R. Shori, and O.M. Stafsudd, “Generation of Q-switched Er:YAG laser pulses using evanescent wave absorption in ethanol,” Appl. Phys. Lett. 72, 2211–2213 (1998).
[Crossref]

Skorczakowski, M.

M. Skorczakowski, P. Nyga, A. Zajac, and W. Zendzian, “2.94 μm Er:YAG laser Q-switched with RTP Pockels cell,” in Proceedings of The European Conference on Lasers and Electro-Optics - CLEO/Europe (Munich, Germany, 2003), paper CA4-04-WEN.

Stafsudd, O.M.

K.L. Vodopyanov, R. Shori, and O.M. Stafsudd, “Generation of Q-switched Er:YAG laser pulses using evanescent wave absorption in ethanol,” Appl. Phys. Lett. 72, 2211–2213 (1998).
[Crossref]

Sulc, J.

H. Jelinkova, M. Nemec, J. Sulc, M. Cech, and M. Ozolinsh, “Er:YAG laser giant pulse generation,” in A Window on the Laser Medicine World,L. Longo, A.G. Hofstetter, M.-L. Pascu, and W. R. Waidelich, eds., Proc. SPIE4903, 227–232 (2002).
[Crossref]

Vodopyanov, K.L.

K.L. Vodopyanov, R. Shori, and O.M. Stafsudd, “Generation of Q-switched Er:YAG laser pulses using evanescent wave absorption in ethanol,” Appl. Phys. Lett. 72, 2211–2213 (1998).
[Crossref]

Walsh, J.T.

J.T. Walsh, T.J. Flotte, R.R. Anderson, and T.F. Deutsch, “Pulsed CO2-laser tissue ablation: Effect of tissue type and pulse duration on thermal damage,” Lasers Surg. Med. 8, 108–118 (1988).
[Crossref] [PubMed]

Weber, H.P.

F. Konz, M. Frenz, V. Romano, M. Forrer, and H.P. Weber, “Active and passive Q-switching of 2.79 μm Er:Cr:YSGG laser,” Opt. Commun. 103, 398–404 (1993).
[Crossref]

A.D. Zweig, M. Frenz, V. Romano, and H.P. Weber, “A comparative study of laser tissue interaction at 2.94 μm and 10.6 μm,” Appl. Phys. B 47, 259–265 (1988).
[Crossref]

Zajac, A.

M. Skorczakowski, P. Nyga, A. Zajac, and W. Zendzian, “2.94 μm Er:YAG laser Q-switched with RTP Pockels cell,” in Proceedings of The European Conference on Lasers and Electro-Optics - CLEO/Europe (Munich, Germany, 2003), paper CA4-04-WEN.

Zendzian, W.

M. Skorczakowski, P. Nyga, A. Zajac, and W. Zendzian, “2.94 μm Er:YAG laser Q-switched with RTP Pockels cell,” in Proceedings of The European Conference on Lasers and Electro-Optics - CLEO/Europe (Munich, Germany, 2003), paper CA4-04-WEN.

Zweig, A.D.

A.D. Zweig, M. Frenz, V. Romano, and H.P. Weber, “A comparative study of laser tissue interaction at 2.94 μm and 10.6 μm,” Appl. Phys. B 47, 259–265 (1988).
[Crossref]

Appl. Phys. B (1)

A.D. Zweig, M. Frenz, V. Romano, and H.P. Weber, “A comparative study of laser tissue interaction at 2.94 μm and 10.6 μm,” Appl. Phys. B 47, 259–265 (1988).
[Crossref]

Appl. Phys. Lett. (1)

K.L. Vodopyanov, R. Shori, and O.M. Stafsudd, “Generation of Q-switched Er:YAG laser pulses using evanescent wave absorption in ethanol,” Appl. Phys. Lett. 72, 2211–2213 (1998).
[Crossref]

Lasers Med. Sci. (1)

J.L. Boulnois, “Photophysical processes in recent medical laser developments - review,” Lasers Med. Sci. 1, 47–66 (1986).
[Crossref]

Lasers Surg. Med. (1)

J.T. Walsh, T.J. Flotte, R.R. Anderson, and T.F. Deutsch, “Pulsed CO2-laser tissue ablation: Effect of tissue type and pulse duration on thermal damage,” Lasers Surg. Med. 8, 108–118 (1988).
[Crossref] [PubMed]

Opt. Commun. (1)

F. Konz, M. Frenz, V. Romano, M. Forrer, and H.P. Weber, “Active and passive Q-switching of 2.79 μm Er:Cr:YSGG laser,” Opt. Commun. 103, 398–404 (1993).
[Crossref]

Other (3)

W. Koechner, “Solid-State Laser Engineering,” 5th edition (Springer-Verlag, New York, 1999).

M. Skorczakowski, P. Nyga, A. Zajac, and W. Zendzian, “2.94 μm Er:YAG laser Q-switched with RTP Pockels cell,” in Proceedings of The European Conference on Lasers and Electro-Optics - CLEO/Europe (Munich, Germany, 2003), paper CA4-04-WEN.

H. Jelinkova, M. Nemec, J. Sulc, M. Cech, and M. Ozolinsh, “Er:YAG laser giant pulse generation,” in A Window on the Laser Medicine World,L. Longo, A.G. Hofstetter, M.-L. Pascu, and W. R. Waidelich, eds., Proc. SPIE4903, 227–232 (2002).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Experimental set-up of Poclels cell Q-switched Er:YAG laser.

Fig. 2.
Fig. 2.

Pulse output energy vs. pump energy for two values of voltage applied to Pockels cell (UPC).

Fig. 3.
Fig. 3.

Oscilloscope picture of the shortest Q-switch pulse generated by Er:YAG laser. Lower trace - laser pulse, upper trace - voltage course applied to Pockels cell.

Fig. 4.
Fig. 4.

Oscilloscope pictures of multi-pulse laser generation in case of inadequate selection of the pump energy and the control voltage of Pockels cell (a) and single-pulse generation in case of optimal laser set-up parameters (b). Upper trace - control voltage of the Q-switch, lower trace - laser pulse.

Fig. 5.
Fig. 5.

Transmission dynamics of Pockels cell during have-wave voltage switching for the time base of 100 μs (a) and 2 μs (b). The measurements were carried out for the probe signal of 1.06 μm wavelength and Uλ/2 = 1.55 kV. Upper trace - Pockels cell transmission, lower trace - control voltage of Pockels cell.

Fig. 6.
Fig. 6.

The dependence of the time of linear laser generation evolution (tln) on the pump energy.

Fig. 7.
Fig. 7.

The dependence of normalized energy per pulse as a function of repetition rate for free-running mode of Er:YAG laser. Ep - pump energy.

Fig. 8.
Fig. 8.

Hypothetical Er:YAG laser interaction with gelatine. The crater on the left was achieved for free-running pulses, and on the right - for Q-switch pulses.

Metrics