Abstract

An actively Q-switched Er:YAG laser generating pulses at 2.94 μm has been developed and investigated. For a single Er:YAG generator at 3 Hz repetition rate, pulses of 91.2 ns duration and 137 mJ energy have been obtained. It corresponds to pulse train with high-peak power of ~ 1.5 MW. For 10 Hz repetition rate 30 mJ of output energy in single pulse has been achieved. These results, according to our knowledge, are the best world-wide achievements.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A. D. Zweig, M. Frenz, V. Romano, H. P. Weber, �??A comparative study of laser tissue interaction at 2.94 m and 10.6 m,�?? Appl. Phys. B 47, 259-265 (1988)
    [CrossRef]
  2. J. L. Boulnois, �??Photophysical processes in recent medical laser developments �?? review,�?? Lasers Med. Sci. 1, 47-66 (1986)
    [CrossRef]
  3. J. T. Walsh, T. J. Flotte, R. R. Anderson, T. F. Deutsch, �??Pulsed CO2-laser tissue ablation: Effect of tissue type and pulse duration on thermal damage,�?? Lasers Surg. Med. 8, 108-118 (1988)
    [CrossRef] [PubMed]
  4. M. Skorczakowski, P. Nyga, A. Zajac, W. Zendzian, �??2.94 m Er:YAG laser Q-switched with RTP Pockels cell,�?? in Proceedings of The European Conference on Lasers and Electro-Optics �?? CLEO/Europe (Munich, Germany, 2003), paper CA4-04-WEN
  5. H. Jelinkova, M. Nemec, J. Sulc, M. Cech, M. Ozolinsh, �??Er:YAG laser giant pulse generation,�?? in A Window on the Laser Medicine World, L. Longo, A.G. Hofstetter, M.-L. Pascu, W. R. Waidelich, eds., Proc. SPIE 4903, 227-232 (2002)
    [CrossRef]
  6. F. Konz, M. Frenz, V. Romano, M. Forrer, H.P. Weber, �??Active and passive Q-switching of 2.79 m Er:Cr:YSGG laser,�?? Opt. Commun. 103, 398-404 (1993)
    [CrossRef]
  7. K. L. Vodopyanov, R. Shori, O. M. Stafsudd, �??Generation of Q-switched Er:YAG laser pulses using evanescent wave absorption in ethanol,�?? Appl. Phys. Lett. 72, 2211-2213 (1998)
    [CrossRef]
  8. W. Koechner, �??Solid-State Laser Engineering,�?? 5th edition (Springer-Verlag, New York, 1999)

Appl. Phys. B (1)

A. D. Zweig, M. Frenz, V. Romano, H. P. Weber, �??A comparative study of laser tissue interaction at 2.94 m and 10.6 m,�?? Appl. Phys. B 47, 259-265 (1988)
[CrossRef]

Appl. Phys. Lett. (1)

K. L. Vodopyanov, R. Shori, O. M. Stafsudd, �??Generation of Q-switched Er:YAG laser pulses using evanescent wave absorption in ethanol,�?? Appl. Phys. Lett. 72, 2211-2213 (1998)
[CrossRef]

CLEO/Europe (1)

M. Skorczakowski, P. Nyga, A. Zajac, W. Zendzian, �??2.94 m Er:YAG laser Q-switched with RTP Pockels cell,�?? in Proceedings of The European Conference on Lasers and Electro-Optics �?? CLEO/Europe (Munich, Germany, 2003), paper CA4-04-WEN

Lasers Med. Sci. (1)

J. L. Boulnois, �??Photophysical processes in recent medical laser developments �?? review,�?? Lasers Med. Sci. 1, 47-66 (1986)
[CrossRef]

Lasers Surg. Med. (1)

J. T. Walsh, T. J. Flotte, R. R. Anderson, T. F. Deutsch, �??Pulsed CO2-laser tissue ablation: Effect of tissue type and pulse duration on thermal damage,�?? Lasers Surg. Med. 8, 108-118 (1988)
[CrossRef] [PubMed]

Opt. Commun. (1)

F. Konz, M. Frenz, V. Romano, M. Forrer, H.P. Weber, �??Active and passive Q-switching of 2.79 m Er:Cr:YSGG laser,�?? Opt. Commun. 103, 398-404 (1993)
[CrossRef]

SPIE (1)

H. Jelinkova, M. Nemec, J. Sulc, M. Cech, M. Ozolinsh, �??Er:YAG laser giant pulse generation,�?? in A Window on the Laser Medicine World, L. Longo, A.G. Hofstetter, M.-L. Pascu, W. R. Waidelich, eds., Proc. SPIE 4903, 227-232 (2002)
[CrossRef]

Other (1)

W. Koechner, �??Solid-State Laser Engineering,�?? 5th edition (Springer-Verlag, New York, 1999)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Experimental set-up of Poclels cell Q-switched Er:YAG laser.

Fig. 2.
Fig. 2.

Pulse output energy vs. pump energy for two values of voltage applied to Pockels cell (UPC).

Fig. 3.
Fig. 3.

Oscilloscope picture of the shortest Q-switch pulse generated by Er:YAG laser. Lower trace - laser pulse, upper trace - voltage course applied to Pockels cell.

Fig. 4.
Fig. 4.

Oscilloscope pictures of multi-pulse laser generation in case of inadequate selection of the pump energy and the control voltage of Pockels cell (a) and single-pulse generation in case of optimal laser set-up parameters (b). Upper trace - control voltage of the Q-switch, lower trace - laser pulse.

Fig. 5.
Fig. 5.

Transmission dynamics of Pockels cell during have-wave voltage switching for the time base of 100 μs (a) and 2 μs (b). The measurements were carried out for the probe signal of 1.06 μm wavelength and Uλ/2 = 1.55 kV. Upper trace - Pockels cell transmission, lower trace - control voltage of Pockels cell.

Fig. 6.
Fig. 6.

The dependence of the time of linear laser generation evolution (tln) on the pump energy.

Fig. 7.
Fig. 7.

The dependence of normalized energy per pulse as a function of repetition rate for free-running mode of Er:YAG laser. Ep - pump energy.

Fig. 8.
Fig. 8.

Hypothetical Er:YAG laser interaction with gelatine. The crater on the left was achieved for free-running pulses, and on the right - for Q-switch pulses.

Metrics