Abstract

A direct spectral phase function calculation method based on spectral phase shifting is described. We show experimentally that the direct phase function calculation method can provide a simple and fast solution in calculating the spectral phase function, while maintaining the same level of accurate measurement capability as that based on the Fourier transform approach.

© 2004 Optical Society of America

PDF Article

References

  • View by:
  • |

  1. K. Creath, �??Temporal phase measuring methods,�?? in Interferogram Analysis: Digital Fringe Pattern Measurement Techniques, D. W. Robinson and G. T. Reid, eds. (Institute of Physics, Bristol, UK, 1993).
  2. Y. Ishii, J. Chen, and K. Murata, �??Digital phase-measuring interferometry with a tunable laser diode,�?? Opt. Lett. 12, 233-235 (1988).
  3. Hariharan P., Roeb. B and T. Eiju, �??Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm,�?? Appl. Opt. 26, 2504-2506 (1987).
  4. P. de Groot and L. Deck, �??Three-dimensional imaging by sub-Nyquist sampling of white-light interferomgrams,�?? Opt. Lett. 18, 1462-1464 (1993).
  5. J. Schwider and L. Zhou, �??Dispersive interferometric profilometer,�?? Opt. Lett. 19, 995-997 (1994).
  6. M. Kinoshita, M. Takeda, H. Yago, Y. Watanabe, and T. Kurokawa, �??Optical frequency-domain microprofilometry with a frequency-tunable liquid-crystal Fabry-Perot etalon device,�?? Appl. Opt. 38, 7063-7068 (1999).
  7. I. Yamaguchi, �??Surface tomography by wavelength scanning interferometry,�?? Opt. Eng. 39, 40-46 (2000).
    [CrossRef]
  8. D. S. Mehta, S. Saito, H. Hinosugi, M. Takeda, and T. Kurokawa, �??Spectral interference Mirau microscope with an acousto-optic tunable filter for three-dimensional surface profilometry,�?? Appl. Opt. 42, 1296-1305 (2003).
  9. D. Kim, S. Kim, H. Kong and Y. Lee, �??Measurement of the thickness profile of a transparent thin film deposited upon a pattern structure with an acousto-optic tunable filter,�?? Opt. Lett. 27, 1893-1895 (2002).
  10. S. W. Kim, G.H. Kim, �??Thickness profile measurement of transparent thin-film layers by white-light scanning interferometry,�?? Appl. Opt. 38, 5968-5973 (1999).
  11. . M. Takeda, Hideki Ina and Seiji Kobayashi, �??Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,�?? J. Opt. Soc. Am. 72, 156 -160 (1982).
  12. T. Kreis, �??Digital holographic interference-phase measurement using the Fourier-transform method,�?? J. Opt. Soc. Am. A 3, 847-855 (1986).
  13. G. Pedrini, I. Alexeenko, W. Osten, and H. J. Tiziani, �??Temporal phase unwrapping of digital hologram sequences,�?? Appl. Opt. 42, 5846-5854 (2003).
  14. The Levenberg-Marquardt algorithm is available as lsqnonlin function by a commercial S/W MATLAB.

Appl. Opt. (5)

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Opt. Eng. (1)

I. Yamaguchi, �??Surface tomography by wavelength scanning interferometry,�?? Opt. Eng. 39, 40-46 (2000).
[CrossRef]

Opt. Lett. (4)

Other (2)

K. Creath, �??Temporal phase measuring methods,�?? in Interferogram Analysis: Digital Fringe Pattern Measurement Techniques, D. W. Robinson and G. T. Reid, eds. (Institute of Physics, Bristol, UK, 1993).

The Levenberg-Marquardt algorithm is available as lsqnonlin function by a commercial S/W MATLAB.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics