Abstract

Self-phase modulation has been observed for ultrashort pulses of wavelength 800nm propagating through a 1 cm-long Ta2O5 rib waveguide. The associated nonlinear refractive index n2 was estimated to be 7.23×10-19 m2/W, which is higher than silica glass by more than one order of magnitude. Femtosecond time of flight measurements based on a Kerr shutter configuration show that the group velocity dispersion is small at a wavelength of 800 nm, confirming that dispersion may be neglected in the estimation of n2 so that a simplified theory can be used with good accuracy.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. B. P. Nelson, K. J. Blow, P. D. Constantine, N. J. Doran, J. K. Lucek, I. W. Marshall, and K. Smith, �??Alloptical Gbit/s switching using nonlinear optical loop mirror,�?? Electron. Lett. 27, 704-705 (1991).
    [CrossRef]
  2. A. Samoc, M. Samoc, M. Woodruff, and B. Luther-Davies, �??Tuning the properties of poly(pphenylenevinylene) for use in all-optical switching,�?? Opt. Lett. 20, 1241-1243 (1995).
    [CrossRef] [PubMed]
  3. M. Asobe, I. Yokohama, T. Kaino, S. Tomaru, and T. Kurihara, �??Nonlinear absorption and refraction in an organic-dye functionalized main-chain polymer wave-guide in the 1.5 m wavelength region,�?? Appl. Phys. Lett. 67, 891-893 (1995).
    [CrossRef]
  4. T. Gabler, R. Waldhäusl, A. Bräuer, F. Michelotti, H. �??H. Hörhold, and U. Bartuch, "Spectral broadening measurements in poly(phenylene vinylene) polymer channel waveguides,�?? Appl. Phys. Lett. 70, 928-930 (1997).
    [CrossRef]
  5. M. Asobe, K. Suzuki, T. Kanamori, and K. Kubodera, �??Nonlinear refractive-index measurement in chalcogenide-glass fibers by self-phase modulation,�?? Appl. Phys. Lett. 60, 1153-1154 (1992).
    [CrossRef]
  6. T. Kobayashi, Nonlinear Optics of Organics and Semiconductors (Springer, Berlin, 1989).
    [CrossRef]
  7. P. C. Joshi and M. W. Cole, �??Influence of postdeposition annealing on the enhanced structural and electrical properties of amorphous and crystalline Ta2O5 thin films for dynamic random access memory applications,�?? J. Appl. Phys. 86, 871-880 (1999).
    [CrossRef]
  8. E. Franke, C. L. Trimble, M. J. DeVries, J. A. Woollam, M. Schubert, and F. Frost, �??Dielectric function of amorphous tantalum oxide from the far infrared to the deep ultraviolet spectral region measured by spectroscopic ellipsometry,�?? J. Appl. Phys. 88, 5166-5174 (2000).
    [CrossRef]
  9. J. Jasapara, A. V. V. Nampoothiri, and W. Rudolph, �??Femtosecond laser pulse induced breakdown in dielectric thin films,�?? Phys. Rev. B 63, 045117 (2001).
    [CrossRef]
  10. G. P. Agrawal, Nonlinear Fiber Optics, (Academic, San Diego, 1989).
  11. P. N. Kean, K. Smith, and W. Sibbett, �??Spectral and temporal investigation of self-phase modulation and stimulated Raman scattering in a single-mode optical fibre,�?? IEE Proc. J. Optoelectron. 134, 163-170 (1987).
    [CrossRef]
  12. B. M. Foley, P. Melman, and K. T. Vo, �??Novel loss measurement technique for optical wave-guides by imaging of scattered-light,�?? Electron. Lett. 28, 584-585 (1992).
    [CrossRef]
  13. J. Requejo-Isidro, A. K. Mairaj, V. Pruneri, D. W. Hewak, M. C. Netti, and J. J. Baumberg, �??Self-refractive non-linearities in chalcogenide based glasses,�?? J. Non-Cryst. Solids 317, 241-246 (2003).
    [CrossRef]
  14. M. Asobe, T. Kanamori, and K. Kubodera, �??Applications of highly nonlinear chalcogenide glass fibers in ultrafast all-optical switches,�?? IEEE J Quantum Electron. 29, 2325-2333 (1993).
    [CrossRef]
  15. M, C. Netti, C. E. Finlayson, J. J. Baumberg, M. D. B. Charlton, M. E. Zoorob, J. S. Wilkinson and G. J. Parker, �??Separation of photonic crystal waveguides modes using femtosecond time-of-flight,�?? Appl. Phys. Lett. 81, 3927-3929 (2002).
    [CrossRef]
  16. J. Takeda, K. Nakajima, and S. Kurita, �??Time-resolved luminescence spectroscopy by the optical Kerr-gate method applicable to ultrafast relaxation processes,�?? Phys. Rev. B 62, 10083-10087 (2000).
    [CrossRef]

Appl. Phys. Lett.

M. Asobe, I. Yokohama, T. Kaino, S. Tomaru, and T. Kurihara, �??Nonlinear absorption and refraction in an organic-dye functionalized main-chain polymer wave-guide in the 1.5 m wavelength region,�?? Appl. Phys. Lett. 67, 891-893 (1995).
[CrossRef]

T. Gabler, R. Waldhäusl, A. Bräuer, F. Michelotti, H. �??H. Hörhold, and U. Bartuch, "Spectral broadening measurements in poly(phenylene vinylene) polymer channel waveguides,�?? Appl. Phys. Lett. 70, 928-930 (1997).
[CrossRef]

M. Asobe, K. Suzuki, T. Kanamori, and K. Kubodera, �??Nonlinear refractive-index measurement in chalcogenide-glass fibers by self-phase modulation,�?? Appl. Phys. Lett. 60, 1153-1154 (1992).
[CrossRef]

M, C. Netti, C. E. Finlayson, J. J. Baumberg, M. D. B. Charlton, M. E. Zoorob, J. S. Wilkinson and G. J. Parker, �??Separation of photonic crystal waveguides modes using femtosecond time-of-flight,�?? Appl. Phys. Lett. 81, 3927-3929 (2002).
[CrossRef]

Electron. Lett.

B. P. Nelson, K. J. Blow, P. D. Constantine, N. J. Doran, J. K. Lucek, I. W. Marshall, and K. Smith, �??Alloptical Gbit/s switching using nonlinear optical loop mirror,�?? Electron. Lett. 27, 704-705 (1991).
[CrossRef]

B. M. Foley, P. Melman, and K. T. Vo, �??Novel loss measurement technique for optical wave-guides by imaging of scattered-light,�?? Electron. Lett. 28, 584-585 (1992).
[CrossRef]

IEE Proc. J. Optoelectron.

P. N. Kean, K. Smith, and W. Sibbett, �??Spectral and temporal investigation of self-phase modulation and stimulated Raman scattering in a single-mode optical fibre,�?? IEE Proc. J. Optoelectron. 134, 163-170 (1987).
[CrossRef]

IEEE J Quantum Electron.

M. Asobe, T. Kanamori, and K. Kubodera, �??Applications of highly nonlinear chalcogenide glass fibers in ultrafast all-optical switches,�?? IEEE J Quantum Electron. 29, 2325-2333 (1993).
[CrossRef]

J. Appl. Phys.

P. C. Joshi and M. W. Cole, �??Influence of postdeposition annealing on the enhanced structural and electrical properties of amorphous and crystalline Ta2O5 thin films for dynamic random access memory applications,�?? J. Appl. Phys. 86, 871-880 (1999).
[CrossRef]

E. Franke, C. L. Trimble, M. J. DeVries, J. A. Woollam, M. Schubert, and F. Frost, �??Dielectric function of amorphous tantalum oxide from the far infrared to the deep ultraviolet spectral region measured by spectroscopic ellipsometry,�?? J. Appl. Phys. 88, 5166-5174 (2000).
[CrossRef]

J. Non-Cryst. Solids.

J. Requejo-Isidro, A. K. Mairaj, V. Pruneri, D. W. Hewak, M. C. Netti, and J. J. Baumberg, �??Self-refractive non-linearities in chalcogenide based glasses,�?? J. Non-Cryst. Solids 317, 241-246 (2003).
[CrossRef]

Opt. Lett.

Phys. Rev. B

J. Takeda, K. Nakajima, and S. Kurita, �??Time-resolved luminescence spectroscopy by the optical Kerr-gate method applicable to ultrafast relaxation processes,�?? Phys. Rev. B 62, 10083-10087 (2000).
[CrossRef]

J. Jasapara, A. V. V. Nampoothiri, and W. Rudolph, �??Femtosecond laser pulse induced breakdown in dielectric thin films,�?? Phys. Rev. B 63, 045117 (2001).
[CrossRef]

Other

G. P. Agrawal, Nonlinear Fiber Optics, (Academic, San Diego, 1989).

T. Kobayashi, Nonlinear Optics of Organics and Semiconductors (Springer, Berlin, 1989).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Spectrum of the incident radiation; (b), (c) & (d) Observed self-phase modulation output spectra at peak coupled powers of 63.9 W, 113.4 W, and 176.6 W, respectively.

Fig. 2.
Fig. 2.

SPM spectral bandwidth against peak-coupled power; the inset shows the modal intensity profile from the rib waveguide.

Fig. 3.
Fig. 3.

Experimental configuration for femtosecond time-of-flight measurements.

Fig. 4.
Fig. 4.

Time-of-flight spectra (black line) and dispersion (blue line) for the fundamental TE mode.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

δω = ϕ NL t = 2 π λ n 2 L eff dI ( t ) dt
L eff = 1 exp ( αL ) α
δλ = δ λ i + 4 2 ln 2 e λ n 2 L eff c A eff P t p
A eff = [ F ( x , y ) 2 dxdy ] 2 F x y 4 dxdy

Metrics