Abstract

We propose and demonstrate experimentally a novel method for synthesizing chirp-free pulses of any desired temporal shape by means of chirp compensation and spectral filtering of optical Raman similaritons. The synthesized pulse shape is independent of the waveform, wavelength and energy of the initial pulses that are used for the similariton generation. Pulses are fully characterized by means of different techniques including cross-correlation and spectrum measurements, and the PICASO technique.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. D. Anderson, M. Desaix, M. Karlsson, M. Lisak, and M. L. Quiroga-Teixeiro, �??Wave-breaking-free pulses in nonlinear-optical fibers,�?? J. Opt. Soc. Am. B 10, 1185-1190 (1993).
    [CrossRef]
  2. K. Tamura and M. Nakazawa, �??Pulse compression by nonlinear pulse evolution with reduced optical wave breaking in erbium-doped fiber amplifiers,�?? Opt. Lett. 21, 68-70 (1996).
    [CrossRef] [PubMed]
  3. M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, �??Self-similar propagation and amplification of parabolic pulses in optical fibers,�?? Phys. Rev. Lett. 84, 6010-6013 (2000).
    [CrossRef] [PubMed]
  4. V. I. Kruglov, A. C. Peacock, J. M. Dudley, and J. D. Harvey, �??Self-similar propagation of parabolic pulses in normal dispersion fiber amplifiers,�?? J. Opt. Soc. Am. B 19, 461-469 (2002).
    [CrossRef]
  5. J. Limpert, T. Schreiber, T. Clausnitzer, K. Zöllner, H. -J. Fuchs, E. -B Bley, H. Zellmer, and A. Tünnermann, �??High Power femtosecond Yb-doped fiber amplifier,�?? Opt. Express 10, 628-638 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-14-628">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-14-628></a>.
    [CrossRef] [PubMed]
  6. A. C. Peacock, N. G. R. Broderick, and T. M. Monro, �??Numerical study of parabolic pulse generation in microstructured fiber Raman amplifiers,�?? Opt. Commun. 218, 167-172 (2003).
    [CrossRef]
  7. C. Finot, G. Millot, C. Billet, and J. M. Dudley, �??Experimental generation of parabolic pulses via Raman amplification in optical fibers,�?? Opt. Express 11, 1547-1552 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-13-1547">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-13-1547</a>.
    [CrossRef] [PubMed]
  8. F. �?. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, �??Self-similar evolution of parabolic pulses in a laser,�?? Phys. Rev. Lett. 92, 213902 (2004).
    [CrossRef] [PubMed]
  9. T. Hirooka and M. Nakazawa, �??Parabolic pulse generation by use of a dispersion-decreasing fiber with normal group-velocity dispersion,�?? Opt. Lett. 29, 498-500 (2004).
    [CrossRef] [PubMed]
  10. C. Finot, G. Millot, and J. M. Dudley, �??Asymptotic characteristics of parabolic similariton pulses in optical fiber amplifiers,�?? Opt. Lett., in press (2004).
    [CrossRef] [PubMed]
  11. M. C. Farries, K. Sugden, D. C. Reid, I. Bennion, A. Molony, and M. J. Goodwin, �??Very broad reflection bandwidth (44 nm) chirped fibre gratings and narrow bandpass filters produced by the use of an amplitude mask,�?? Electron. Lett. 30, 891-892 (1994).
    [CrossRef]
  12. S. Longhi, M. Marano, P. Laporta, O. Svelto, and M. Belmonte, �??Propagation, manipulation, and control of picosecond optical pulses at 1.5 µm in fiber Bragg gratings,�?? J. Opt. Soc. Am. B 19, 2742-2757 (2002).
    [CrossRef]
  13. J. W. Nicholson, J. Jasapara, W. Rudolph, F. G. Omenetto, and A. J. Taylor, �??Full-field characterization of femtosecond pulses by spectrum and cross-correlation measurements,�?? Opt. Lett. 24, 1774-1776 (1999).
    [CrossRef]
  14. R. Trebino, Frequency-Resolved Optical Gating. The Measurement of Ultrashort Laser Pulses (Kluwer Academic Publishers, 2000).
  15. S. Boscolo, S. K. Turitsyn, V. Yu. Novokshenov and J. H. B. Nijhof, "Self-similar parabolic optical solitary waves," Theor. Math. Phys. 133, 1647-1656 (2002).
    [CrossRef]

Electron. Lett. (1)

M. C. Farries, K. Sugden, D. C. Reid, I. Bennion, A. Molony, and M. J. Goodwin, �??Very broad reflection bandwidth (44 nm) chirped fibre gratings and narrow bandpass filters produced by the use of an amplitude mask,�?? Electron. Lett. 30, 891-892 (1994).
[CrossRef]

J. Opt. Soc. Am. B (3)

Opt. Commun. (1)

A. C. Peacock, N. G. R. Broderick, and T. M. Monro, �??Numerical study of parabolic pulse generation in microstructured fiber Raman amplifiers,�?? Opt. Commun. 218, 167-172 (2003).
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Phys. Rev. Lett. (2)

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, �??Self-similar propagation and amplification of parabolic pulses in optical fibers,�?? Phys. Rev. Lett. 84, 6010-6013 (2000).
[CrossRef] [PubMed]

F. �?. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, �??Self-similar evolution of parabolic pulses in a laser,�?? Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

Theor. Math. Phys. (1)

S. Boscolo, S. K. Turitsyn, V. Yu. Novokshenov and J. H. B. Nijhof, "Self-similar parabolic optical solitary waves," Theor. Math. Phys. 133, 1647-1656 (2002).
[CrossRef]

Other (1)

R. Trebino, Frequency-Resolved Optical Gating. The Measurement of Ultrashort Laser Pulses (Kluwer Academic Publishers, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Pulse synthesis and characterization experimental setup.

Fig. 2.
Fig. 2.

(a) Intensity from PICASO retrievals of the initial pulse. (b) Intensity and chirp profiles from cross-correlation measurements of the similariton pulse (circles). Parabolic and linear fits (solid lines) of respectively intensity and chirp profiles. (c) Intensity and phase profiles from PICASO retrievals of the synthesized pulse (circles). Gaussian fit (solid line).

Fig. 3.
Fig. 3.

Intensity from PICASO retrievals of three different initial pulses with identical energy of 4.95 pJ (a) and corresponding synthesized pulses (b). (c) Experimental evolution of the temporal width of the synthesized pulse autocorrelation as a function of the input pulse energy.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

i E z = β 2 2 2 E t 2 γ E 2 E + i g 2 E ,
E ˜ z ω = Ao C exp ( gz 3 ) 1 ( ω ω p ( z ) ) 2 exp [ i ( ψ o + 3 γ A o 2 2 g exp ( 2 gz 3 ) ω 2 2 C ) ] , ω ω p ( z )

Metrics