Abstract

We have used an optical fiber based system to implement optical detection of atoms trapped on a reflective “atom-chip”. A fiber pair forms an emitter-detector setup that is bonded to the atom-chip surface to optically detect and probe laser cooled atoms trapped in a surface magneto-optical trap. We demonstrate the utility of this scheme by measuring the linewidth of the Cs D2 line at different laser intensities.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Hansel, P. Hommelhoff, T.W. Hansch, and J. Reichel, “Bose-Einstein condensation on a microelectronic chip,” Nature 413, 498–501 (2001).
    [Crossref] [PubMed]
  2. D. Cassettari, B. Hessmo, R. Folman, T. Maier, and J. Schmiedmayer, “Beam Splitter for Guided Atoms,” Phys. Rev. Lett 85, 5483–5487 (2000).
    [Crossref]
  3. D. Casserati, A. Chenet, R. Folman, A. Haase, B. Hessmo, P. Kruger, T. Maier, S. Schneider, T. Calarco, and J. Schmiedmayer, “Micromanipulation of neutral atoms with nanofabricated structures,” Appl. Phys. B 70, 721–730 (2000).
    [Crossref]
  4. J. Reichel, W. Hansel, P. Hommelhoff, and T.W. Hansch, “Applications of integrated magnetic microtraps,” Appl. Phys. B 72, 81–89 (2001).
    [Crossref]
  5. H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, and C. Zimmermann, “Bose-Einstein Condensation in a Surface Microtrap,” Phys. Rev. Lett. 87, 230401 (2001).
    [Crossref] [PubMed]
  6. A.H. Barnett, S.P. Smith, M. Olshanii, K.S. Johnson, A.W. Adams, and M. Prentiss, “Substrate-based atom waveguide using guided two color evanescent light fields,” PRA 61, 023608 (2000).
    [Crossref]
  7. P. Horak, B.G. Klappauf, A. Haase, R. Folman, J Schmiedmayer, P. Domokos, and E.A. Hinds, “Possibility of single-atom detection on a chip,” PRA 67, 043806 (2003).
    [Crossref]
  8. A. Constable, Jinha Kim, J. Mervis, F. Zarinetchi, and M. Prentiss, “Demonstration of a fiber-optical light-force trap,” Opt. Lett. 18, 1867–1869 (1993).
    [Crossref] [PubMed]
  9. E.R. Lyons and G.J. Sonek, “Confinement and bistability in a tapered hemispherically lensed optical fiber trap,” Appl. Phys. Lett. 66, 1584–1586, (1995).
    [Crossref]
  10. R.C. Gauthier and A. Frangioudakis, “Optical Levitation Particle Delivery System for a Dual Bem Fiber Optic Trap,” Appl. Opt. 39, 26–33, (2000).
    [Crossref]
  11. M.T. Renn, D. Montgomery, O. Vdovin, D.Z. Anderson, C.E. Wieman, and E.A. Cornell, “Laser-Guided Atoms in Hollow-Core Optical Fibers,” Phys. Rev. Lett. 75, 3253–3256, (1995).
    [Crossref] [PubMed]
  12. The lensed fiber was obtained from the Corning division of photonic materials, corning optifocus.
  13. E.R.I. Abraham and E.A. Cornell, “Teflon Feedthrough for Coupling Optical Fibers into Ultrahigh Vacuum Systems,” Appl. Opt. 37, 1762–1763 (1998).
    [Crossref]
  14. M. Holmes, M. Tscherneck, P. A. Quinto-Su, and N. P. Bigelow, “Isotopic difference in the heteronuclear loss rate in a two species surface trap,” Phys. Rev. A 69, 063408, (2004).
    [Crossref]
  15. H.J. Metcalf, Laser Cooling and Trapping, (Springer, New York, 1999).
    [Crossref]
  16. D.A. Steck, Cesium D line Data.
  17. S. Kadlecek, J. Sebby, R. Newell, and T. G. Walker, “Nondestructive spatial heterodyne imaging of cold atoms,” Opt. Lett. 26, 137–139 (2001).
    [Crossref]
  18. P.J. Fox, T.R. Mackin, L.D. Turner, I. Colton, K.A. Nugent, and R.E. Scholten, “Noninterferometric phase imaging of a neutral atomic beam,” J. Opt. Soc. Am B 19, 1773–1776 (2002).
    [Crossref]
  19. R. Dumke, M. Volk, T. Muther, F.B.J. Buchkremer, G. Birkl, and W. Ertmer, “Micro-optical Realization of Arrays of Selectively Addressable Dipole Traps: A Scalable Configuration for Quantum Computation with Atomic Qubits,” Phys. Rev. Lett. 89, 097903 (2002).
    [Crossref] [PubMed]

2004 (1)

M. Holmes, M. Tscherneck, P. A. Quinto-Su, and N. P. Bigelow, “Isotopic difference in the heteronuclear loss rate in a two species surface trap,” Phys. Rev. A 69, 063408, (2004).
[Crossref]

2003 (1)

P. Horak, B.G. Klappauf, A. Haase, R. Folman, J Schmiedmayer, P. Domokos, and E.A. Hinds, “Possibility of single-atom detection on a chip,” PRA 67, 043806 (2003).
[Crossref]

2002 (2)

P.J. Fox, T.R. Mackin, L.D. Turner, I. Colton, K.A. Nugent, and R.E. Scholten, “Noninterferometric phase imaging of a neutral atomic beam,” J. Opt. Soc. Am B 19, 1773–1776 (2002).
[Crossref]

R. Dumke, M. Volk, T. Muther, F.B.J. Buchkremer, G. Birkl, and W. Ertmer, “Micro-optical Realization of Arrays of Selectively Addressable Dipole Traps: A Scalable Configuration for Quantum Computation with Atomic Qubits,” Phys. Rev. Lett. 89, 097903 (2002).
[Crossref] [PubMed]

2001 (4)

S. Kadlecek, J. Sebby, R. Newell, and T. G. Walker, “Nondestructive spatial heterodyne imaging of cold atoms,” Opt. Lett. 26, 137–139 (2001).
[Crossref]

W. Hansel, P. Hommelhoff, T.W. Hansch, and J. Reichel, “Bose-Einstein condensation on a microelectronic chip,” Nature 413, 498–501 (2001).
[Crossref] [PubMed]

J. Reichel, W. Hansel, P. Hommelhoff, and T.W. Hansch, “Applications of integrated magnetic microtraps,” Appl. Phys. B 72, 81–89 (2001).
[Crossref]

H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, and C. Zimmermann, “Bose-Einstein Condensation in a Surface Microtrap,” Phys. Rev. Lett. 87, 230401 (2001).
[Crossref] [PubMed]

2000 (4)

A.H. Barnett, S.P. Smith, M. Olshanii, K.S. Johnson, A.W. Adams, and M. Prentiss, “Substrate-based atom waveguide using guided two color evanescent light fields,” PRA 61, 023608 (2000).
[Crossref]

D. Cassettari, B. Hessmo, R. Folman, T. Maier, and J. Schmiedmayer, “Beam Splitter for Guided Atoms,” Phys. Rev. Lett 85, 5483–5487 (2000).
[Crossref]

D. Casserati, A. Chenet, R. Folman, A. Haase, B. Hessmo, P. Kruger, T. Maier, S. Schneider, T. Calarco, and J. Schmiedmayer, “Micromanipulation of neutral atoms with nanofabricated structures,” Appl. Phys. B 70, 721–730 (2000).
[Crossref]

R.C. Gauthier and A. Frangioudakis, “Optical Levitation Particle Delivery System for a Dual Bem Fiber Optic Trap,” Appl. Opt. 39, 26–33, (2000).
[Crossref]

1998 (1)

1995 (2)

E.R. Lyons and G.J. Sonek, “Confinement and bistability in a tapered hemispherically lensed optical fiber trap,” Appl. Phys. Lett. 66, 1584–1586, (1995).
[Crossref]

M.T. Renn, D. Montgomery, O. Vdovin, D.Z. Anderson, C.E. Wieman, and E.A. Cornell, “Laser-Guided Atoms in Hollow-Core Optical Fibers,” Phys. Rev. Lett. 75, 3253–3256, (1995).
[Crossref] [PubMed]

1993 (1)

Abraham, E.R.I.

Adams, A.W.

A.H. Barnett, S.P. Smith, M. Olshanii, K.S. Johnson, A.W. Adams, and M. Prentiss, “Substrate-based atom waveguide using guided two color evanescent light fields,” PRA 61, 023608 (2000).
[Crossref]

Anderson, D.Z.

M.T. Renn, D. Montgomery, O. Vdovin, D.Z. Anderson, C.E. Wieman, and E.A. Cornell, “Laser-Guided Atoms in Hollow-Core Optical Fibers,” Phys. Rev. Lett. 75, 3253–3256, (1995).
[Crossref] [PubMed]

Barnett, A.H.

A.H. Barnett, S.P. Smith, M. Olshanii, K.S. Johnson, A.W. Adams, and M. Prentiss, “Substrate-based atom waveguide using guided two color evanescent light fields,” PRA 61, 023608 (2000).
[Crossref]

Bigelow, N. P.

M. Holmes, M. Tscherneck, P. A. Quinto-Su, and N. P. Bigelow, “Isotopic difference in the heteronuclear loss rate in a two species surface trap,” Phys. Rev. A 69, 063408, (2004).
[Crossref]

Birkl, G.

R. Dumke, M. Volk, T. Muther, F.B.J. Buchkremer, G. Birkl, and W. Ertmer, “Micro-optical Realization of Arrays of Selectively Addressable Dipole Traps: A Scalable Configuration for Quantum Computation with Atomic Qubits,” Phys. Rev. Lett. 89, 097903 (2002).
[Crossref] [PubMed]

Buchkremer, F.B.J.

R. Dumke, M. Volk, T. Muther, F.B.J. Buchkremer, G. Birkl, and W. Ertmer, “Micro-optical Realization of Arrays of Selectively Addressable Dipole Traps: A Scalable Configuration for Quantum Computation with Atomic Qubits,” Phys. Rev. Lett. 89, 097903 (2002).
[Crossref] [PubMed]

Calarco, T.

D. Casserati, A. Chenet, R. Folman, A. Haase, B. Hessmo, P. Kruger, T. Maier, S. Schneider, T. Calarco, and J. Schmiedmayer, “Micromanipulation of neutral atoms with nanofabricated structures,” Appl. Phys. B 70, 721–730 (2000).
[Crossref]

Casserati, D.

D. Casserati, A. Chenet, R. Folman, A. Haase, B. Hessmo, P. Kruger, T. Maier, S. Schneider, T. Calarco, and J. Schmiedmayer, “Micromanipulation of neutral atoms with nanofabricated structures,” Appl. Phys. B 70, 721–730 (2000).
[Crossref]

Cassettari, D.

D. Cassettari, B. Hessmo, R. Folman, T. Maier, and J. Schmiedmayer, “Beam Splitter for Guided Atoms,” Phys. Rev. Lett 85, 5483–5487 (2000).
[Crossref]

Chenet, A.

D. Casserati, A. Chenet, R. Folman, A. Haase, B. Hessmo, P. Kruger, T. Maier, S. Schneider, T. Calarco, and J. Schmiedmayer, “Micromanipulation of neutral atoms with nanofabricated structures,” Appl. Phys. B 70, 721–730 (2000).
[Crossref]

Colton, I.

P.J. Fox, T.R. Mackin, L.D. Turner, I. Colton, K.A. Nugent, and R.E. Scholten, “Noninterferometric phase imaging of a neutral atomic beam,” J. Opt. Soc. Am B 19, 1773–1776 (2002).
[Crossref]

Constable, A.

Cornell, E.A.

E.R.I. Abraham and E.A. Cornell, “Teflon Feedthrough for Coupling Optical Fibers into Ultrahigh Vacuum Systems,” Appl. Opt. 37, 1762–1763 (1998).
[Crossref]

M.T. Renn, D. Montgomery, O. Vdovin, D.Z. Anderson, C.E. Wieman, and E.A. Cornell, “Laser-Guided Atoms in Hollow-Core Optical Fibers,” Phys. Rev. Lett. 75, 3253–3256, (1995).
[Crossref] [PubMed]

Domokos, P.

P. Horak, B.G. Klappauf, A. Haase, R. Folman, J Schmiedmayer, P. Domokos, and E.A. Hinds, “Possibility of single-atom detection on a chip,” PRA 67, 043806 (2003).
[Crossref]

Dumke, R.

R. Dumke, M. Volk, T. Muther, F.B.J. Buchkremer, G. Birkl, and W. Ertmer, “Micro-optical Realization of Arrays of Selectively Addressable Dipole Traps: A Scalable Configuration for Quantum Computation with Atomic Qubits,” Phys. Rev. Lett. 89, 097903 (2002).
[Crossref] [PubMed]

Ertmer, W.

R. Dumke, M. Volk, T. Muther, F.B.J. Buchkremer, G. Birkl, and W. Ertmer, “Micro-optical Realization of Arrays of Selectively Addressable Dipole Traps: A Scalable Configuration for Quantum Computation with Atomic Qubits,” Phys. Rev. Lett. 89, 097903 (2002).
[Crossref] [PubMed]

Folman, R.

P. Horak, B.G. Klappauf, A. Haase, R. Folman, J Schmiedmayer, P. Domokos, and E.A. Hinds, “Possibility of single-atom detection on a chip,” PRA 67, 043806 (2003).
[Crossref]

D. Casserati, A. Chenet, R. Folman, A. Haase, B. Hessmo, P. Kruger, T. Maier, S. Schneider, T. Calarco, and J. Schmiedmayer, “Micromanipulation of neutral atoms with nanofabricated structures,” Appl. Phys. B 70, 721–730 (2000).
[Crossref]

D. Cassettari, B. Hessmo, R. Folman, T. Maier, and J. Schmiedmayer, “Beam Splitter for Guided Atoms,” Phys. Rev. Lett 85, 5483–5487 (2000).
[Crossref]

Fortagh, J.

H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, and C. Zimmermann, “Bose-Einstein Condensation in a Surface Microtrap,” Phys. Rev. Lett. 87, 230401 (2001).
[Crossref] [PubMed]

Fox, P.J.

P.J. Fox, T.R. Mackin, L.D. Turner, I. Colton, K.A. Nugent, and R.E. Scholten, “Noninterferometric phase imaging of a neutral atomic beam,” J. Opt. Soc. Am B 19, 1773–1776 (2002).
[Crossref]

Frangioudakis, A.

Gauthier, R.C.

Grossmann, A.

H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, and C. Zimmermann, “Bose-Einstein Condensation in a Surface Microtrap,” Phys. Rev. Lett. 87, 230401 (2001).
[Crossref] [PubMed]

Haase, A.

P. Horak, B.G. Klappauf, A. Haase, R. Folman, J Schmiedmayer, P. Domokos, and E.A. Hinds, “Possibility of single-atom detection on a chip,” PRA 67, 043806 (2003).
[Crossref]

D. Casserati, A. Chenet, R. Folman, A. Haase, B. Hessmo, P. Kruger, T. Maier, S. Schneider, T. Calarco, and J. Schmiedmayer, “Micromanipulation of neutral atoms with nanofabricated structures,” Appl. Phys. B 70, 721–730 (2000).
[Crossref]

Hansch, T.W.

W. Hansel, P. Hommelhoff, T.W. Hansch, and J. Reichel, “Bose-Einstein condensation on a microelectronic chip,” Nature 413, 498–501 (2001).
[Crossref] [PubMed]

J. Reichel, W. Hansel, P. Hommelhoff, and T.W. Hansch, “Applications of integrated magnetic microtraps,” Appl. Phys. B 72, 81–89 (2001).
[Crossref]

Hansel, W.

J. Reichel, W. Hansel, P. Hommelhoff, and T.W. Hansch, “Applications of integrated magnetic microtraps,” Appl. Phys. B 72, 81–89 (2001).
[Crossref]

W. Hansel, P. Hommelhoff, T.W. Hansch, and J. Reichel, “Bose-Einstein condensation on a microelectronic chip,” Nature 413, 498–501 (2001).
[Crossref] [PubMed]

Hessmo, B.

D. Cassettari, B. Hessmo, R. Folman, T. Maier, and J. Schmiedmayer, “Beam Splitter for Guided Atoms,” Phys. Rev. Lett 85, 5483–5487 (2000).
[Crossref]

D. Casserati, A. Chenet, R. Folman, A. Haase, B. Hessmo, P. Kruger, T. Maier, S. Schneider, T. Calarco, and J. Schmiedmayer, “Micromanipulation of neutral atoms with nanofabricated structures,” Appl. Phys. B 70, 721–730 (2000).
[Crossref]

Hinds, E.A.

P. Horak, B.G. Klappauf, A. Haase, R. Folman, J Schmiedmayer, P. Domokos, and E.A. Hinds, “Possibility of single-atom detection on a chip,” PRA 67, 043806 (2003).
[Crossref]

Holmes, M.

M. Holmes, M. Tscherneck, P. A. Quinto-Su, and N. P. Bigelow, “Isotopic difference in the heteronuclear loss rate in a two species surface trap,” Phys. Rev. A 69, 063408, (2004).
[Crossref]

Hommelhoff, P.

W. Hansel, P. Hommelhoff, T.W. Hansch, and J. Reichel, “Bose-Einstein condensation on a microelectronic chip,” Nature 413, 498–501 (2001).
[Crossref] [PubMed]

J. Reichel, W. Hansel, P. Hommelhoff, and T.W. Hansch, “Applications of integrated magnetic microtraps,” Appl. Phys. B 72, 81–89 (2001).
[Crossref]

Horak, P.

P. Horak, B.G. Klappauf, A. Haase, R. Folman, J Schmiedmayer, P. Domokos, and E.A. Hinds, “Possibility of single-atom detection on a chip,” PRA 67, 043806 (2003).
[Crossref]

Johnson, K.S.

A.H. Barnett, S.P. Smith, M. Olshanii, K.S. Johnson, A.W. Adams, and M. Prentiss, “Substrate-based atom waveguide using guided two color evanescent light fields,” PRA 61, 023608 (2000).
[Crossref]

Kadlecek, S.

Kim, Jinha

Klappauf, B.G.

P. Horak, B.G. Klappauf, A. Haase, R. Folman, J Schmiedmayer, P. Domokos, and E.A. Hinds, “Possibility of single-atom detection on a chip,” PRA 67, 043806 (2003).
[Crossref]

Kruger, P.

D. Casserati, A. Chenet, R. Folman, A. Haase, B. Hessmo, P. Kruger, T. Maier, S. Schneider, T. Calarco, and J. Schmiedmayer, “Micromanipulation of neutral atoms with nanofabricated structures,” Appl. Phys. B 70, 721–730 (2000).
[Crossref]

Lyons, E.R.

E.R. Lyons and G.J. Sonek, “Confinement and bistability in a tapered hemispherically lensed optical fiber trap,” Appl. Phys. Lett. 66, 1584–1586, (1995).
[Crossref]

Mackin, T.R.

P.J. Fox, T.R. Mackin, L.D. Turner, I. Colton, K.A. Nugent, and R.E. Scholten, “Noninterferometric phase imaging of a neutral atomic beam,” J. Opt. Soc. Am B 19, 1773–1776 (2002).
[Crossref]

Maier, T.

D. Casserati, A. Chenet, R. Folman, A. Haase, B. Hessmo, P. Kruger, T. Maier, S. Schneider, T. Calarco, and J. Schmiedmayer, “Micromanipulation of neutral atoms with nanofabricated structures,” Appl. Phys. B 70, 721–730 (2000).
[Crossref]

D. Cassettari, B. Hessmo, R. Folman, T. Maier, and J. Schmiedmayer, “Beam Splitter for Guided Atoms,” Phys. Rev. Lett 85, 5483–5487 (2000).
[Crossref]

Mervis, J.

Metcalf, H.J.

H.J. Metcalf, Laser Cooling and Trapping, (Springer, New York, 1999).
[Crossref]

Montgomery, D.

M.T. Renn, D. Montgomery, O. Vdovin, D.Z. Anderson, C.E. Wieman, and E.A. Cornell, “Laser-Guided Atoms in Hollow-Core Optical Fibers,” Phys. Rev. Lett. 75, 3253–3256, (1995).
[Crossref] [PubMed]

Muther, T.

R. Dumke, M. Volk, T. Muther, F.B.J. Buchkremer, G. Birkl, and W. Ertmer, “Micro-optical Realization of Arrays of Selectively Addressable Dipole Traps: A Scalable Configuration for Quantum Computation with Atomic Qubits,” Phys. Rev. Lett. 89, 097903 (2002).
[Crossref] [PubMed]

Newell, R.

Nugent, K.A.

P.J. Fox, T.R. Mackin, L.D. Turner, I. Colton, K.A. Nugent, and R.E. Scholten, “Noninterferometric phase imaging of a neutral atomic beam,” J. Opt. Soc. Am B 19, 1773–1776 (2002).
[Crossref]

Olshanii, M.

A.H. Barnett, S.P. Smith, M. Olshanii, K.S. Johnson, A.W. Adams, and M. Prentiss, “Substrate-based atom waveguide using guided two color evanescent light fields,” PRA 61, 023608 (2000).
[Crossref]

Ott, H.

H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, and C. Zimmermann, “Bose-Einstein Condensation in a Surface Microtrap,” Phys. Rev. Lett. 87, 230401 (2001).
[Crossref] [PubMed]

Prentiss, M.

A.H. Barnett, S.P. Smith, M. Olshanii, K.S. Johnson, A.W. Adams, and M. Prentiss, “Substrate-based atom waveguide using guided two color evanescent light fields,” PRA 61, 023608 (2000).
[Crossref]

A. Constable, Jinha Kim, J. Mervis, F. Zarinetchi, and M. Prentiss, “Demonstration of a fiber-optical light-force trap,” Opt. Lett. 18, 1867–1869 (1993).
[Crossref] [PubMed]

Quinto-Su, P. A.

M. Holmes, M. Tscherneck, P. A. Quinto-Su, and N. P. Bigelow, “Isotopic difference in the heteronuclear loss rate in a two species surface trap,” Phys. Rev. A 69, 063408, (2004).
[Crossref]

Reichel, J.

J. Reichel, W. Hansel, P. Hommelhoff, and T.W. Hansch, “Applications of integrated magnetic microtraps,” Appl. Phys. B 72, 81–89 (2001).
[Crossref]

W. Hansel, P. Hommelhoff, T.W. Hansch, and J. Reichel, “Bose-Einstein condensation on a microelectronic chip,” Nature 413, 498–501 (2001).
[Crossref] [PubMed]

Renn, M.T.

M.T. Renn, D. Montgomery, O. Vdovin, D.Z. Anderson, C.E. Wieman, and E.A. Cornell, “Laser-Guided Atoms in Hollow-Core Optical Fibers,” Phys. Rev. Lett. 75, 3253–3256, (1995).
[Crossref] [PubMed]

Schlotterbeck, G.

H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, and C. Zimmermann, “Bose-Einstein Condensation in a Surface Microtrap,” Phys. Rev. Lett. 87, 230401 (2001).
[Crossref] [PubMed]

Schmiedmayer, J

P. Horak, B.G. Klappauf, A. Haase, R. Folman, J Schmiedmayer, P. Domokos, and E.A. Hinds, “Possibility of single-atom detection on a chip,” PRA 67, 043806 (2003).
[Crossref]

Schmiedmayer, J.

D. Casserati, A. Chenet, R. Folman, A. Haase, B. Hessmo, P. Kruger, T. Maier, S. Schneider, T. Calarco, and J. Schmiedmayer, “Micromanipulation of neutral atoms with nanofabricated structures,” Appl. Phys. B 70, 721–730 (2000).
[Crossref]

D. Cassettari, B. Hessmo, R. Folman, T. Maier, and J. Schmiedmayer, “Beam Splitter for Guided Atoms,” Phys. Rev. Lett 85, 5483–5487 (2000).
[Crossref]

Schneider, S.

D. Casserati, A. Chenet, R. Folman, A. Haase, B. Hessmo, P. Kruger, T. Maier, S. Schneider, T. Calarco, and J. Schmiedmayer, “Micromanipulation of neutral atoms with nanofabricated structures,” Appl. Phys. B 70, 721–730 (2000).
[Crossref]

Scholten, R.E.

P.J. Fox, T.R. Mackin, L.D. Turner, I. Colton, K.A. Nugent, and R.E. Scholten, “Noninterferometric phase imaging of a neutral atomic beam,” J. Opt. Soc. Am B 19, 1773–1776 (2002).
[Crossref]

Sebby, J.

Smith, S.P.

A.H. Barnett, S.P. Smith, M. Olshanii, K.S. Johnson, A.W. Adams, and M. Prentiss, “Substrate-based atom waveguide using guided two color evanescent light fields,” PRA 61, 023608 (2000).
[Crossref]

Sonek, G.J.

E.R. Lyons and G.J. Sonek, “Confinement and bistability in a tapered hemispherically lensed optical fiber trap,” Appl. Phys. Lett. 66, 1584–1586, (1995).
[Crossref]

Steck, D.A.

D.A. Steck, Cesium D line Data.

Tscherneck, M.

M. Holmes, M. Tscherneck, P. A. Quinto-Su, and N. P. Bigelow, “Isotopic difference in the heteronuclear loss rate in a two species surface trap,” Phys. Rev. A 69, 063408, (2004).
[Crossref]

Turner, L.D.

P.J. Fox, T.R. Mackin, L.D. Turner, I. Colton, K.A. Nugent, and R.E. Scholten, “Noninterferometric phase imaging of a neutral atomic beam,” J. Opt. Soc. Am B 19, 1773–1776 (2002).
[Crossref]

Vdovin, O.

M.T. Renn, D. Montgomery, O. Vdovin, D.Z. Anderson, C.E. Wieman, and E.A. Cornell, “Laser-Guided Atoms in Hollow-Core Optical Fibers,” Phys. Rev. Lett. 75, 3253–3256, (1995).
[Crossref] [PubMed]

Volk, M.

R. Dumke, M. Volk, T. Muther, F.B.J. Buchkremer, G. Birkl, and W. Ertmer, “Micro-optical Realization of Arrays of Selectively Addressable Dipole Traps: A Scalable Configuration for Quantum Computation with Atomic Qubits,” Phys. Rev. Lett. 89, 097903 (2002).
[Crossref] [PubMed]

Walker, T. G.

Wieman, C.E.

M.T. Renn, D. Montgomery, O. Vdovin, D.Z. Anderson, C.E. Wieman, and E.A. Cornell, “Laser-Guided Atoms in Hollow-Core Optical Fibers,” Phys. Rev. Lett. 75, 3253–3256, (1995).
[Crossref] [PubMed]

Zarinetchi, F.

Zimmermann, C.

H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, and C. Zimmermann, “Bose-Einstein Condensation in a Surface Microtrap,” Phys. Rev. Lett. 87, 230401 (2001).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. B (2)

D. Casserati, A. Chenet, R. Folman, A. Haase, B. Hessmo, P. Kruger, T. Maier, S. Schneider, T. Calarco, and J. Schmiedmayer, “Micromanipulation of neutral atoms with nanofabricated structures,” Appl. Phys. B 70, 721–730 (2000).
[Crossref]

J. Reichel, W. Hansel, P. Hommelhoff, and T.W. Hansch, “Applications of integrated magnetic microtraps,” Appl. Phys. B 72, 81–89 (2001).
[Crossref]

Appl. Phys. Lett. (1)

E.R. Lyons and G.J. Sonek, “Confinement and bistability in a tapered hemispherically lensed optical fiber trap,” Appl. Phys. Lett. 66, 1584–1586, (1995).
[Crossref]

J. Opt. Soc. Am B (1)

P.J. Fox, T.R. Mackin, L.D. Turner, I. Colton, K.A. Nugent, and R.E. Scholten, “Noninterferometric phase imaging of a neutral atomic beam,” J. Opt. Soc. Am B 19, 1773–1776 (2002).
[Crossref]

Nature (1)

W. Hansel, P. Hommelhoff, T.W. Hansch, and J. Reichel, “Bose-Einstein condensation on a microelectronic chip,” Nature 413, 498–501 (2001).
[Crossref] [PubMed]

Opt. Lett. (2)

Phys. Rev. A (1)

M. Holmes, M. Tscherneck, P. A. Quinto-Su, and N. P. Bigelow, “Isotopic difference in the heteronuclear loss rate in a two species surface trap,” Phys. Rev. A 69, 063408, (2004).
[Crossref]

Phys. Rev. Lett (1)

D. Cassettari, B. Hessmo, R. Folman, T. Maier, and J. Schmiedmayer, “Beam Splitter for Guided Atoms,” Phys. Rev. Lett 85, 5483–5487 (2000).
[Crossref]

Phys. Rev. Lett. (3)

H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, and C. Zimmermann, “Bose-Einstein Condensation in a Surface Microtrap,” Phys. Rev. Lett. 87, 230401 (2001).
[Crossref] [PubMed]

R. Dumke, M. Volk, T. Muther, F.B.J. Buchkremer, G. Birkl, and W. Ertmer, “Micro-optical Realization of Arrays of Selectively Addressable Dipole Traps: A Scalable Configuration for Quantum Computation with Atomic Qubits,” Phys. Rev. Lett. 89, 097903 (2002).
[Crossref] [PubMed]

M.T. Renn, D. Montgomery, O. Vdovin, D.Z. Anderson, C.E. Wieman, and E.A. Cornell, “Laser-Guided Atoms in Hollow-Core Optical Fibers,” Phys. Rev. Lett. 75, 3253–3256, (1995).
[Crossref] [PubMed]

PRA (2)

A.H. Barnett, S.P. Smith, M. Olshanii, K.S. Johnson, A.W. Adams, and M. Prentiss, “Substrate-based atom waveguide using guided two color evanescent light fields,” PRA 61, 023608 (2000).
[Crossref]

P. Horak, B.G. Klappauf, A. Haase, R. Folman, J Schmiedmayer, P. Domokos, and E.A. Hinds, “Possibility of single-atom detection on a chip,” PRA 67, 043806 (2003).
[Crossref]

Other (3)

The lensed fiber was obtained from the Corning division of photonic materials, corning optifocus.

H.J. Metcalf, Laser Cooling and Trapping, (Springer, New York, 1999).
[Crossref]

D.A. Steck, Cesium D line Data.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Configuration of the optical fibers. The lensed fiber (right) is coupled to the laser and the multimode fiber (left) takes the light into a photo-detector. The “fibers” on the bottom are reflections from the mirrored surface. The dark lines on the surface are the contours of etched wires. The separation between the fibers and the height are 4.5 mm and 0.6 mm respectively.

Fig. 2.
Fig. 2.

Fiber experimental setup.

Fig. 3.
Fig. 3.

Frequency scans for different intensities of the detection laser, the height of the peaks is the power scattered by the atoms. (a) I = 3.16 mW/cm2, P0 =55.4 nW with 1.4% scattered by the atoms. In (b) I = 0.8 mW/cm2, P0=12.1nW with 5% scattered. (c) I = 0.26 mW/cm2, P0=4 nW with 9.8% scattered.

Fig. 4.
Fig. 4.

Linewith as a function of s 0 = I/Is . The line is the theoretical linewidth γ = γ 1 + s 0

Fig. 5.
Fig. 5.

Power absorbed by the MMOT as a function of probe power. The error bars are statistical errors from different runs.

Metrics