Abstract

We have used an optical fiber based system to implement optical detection of atoms trapped on a reflective “atom-chip”. A fiber pair forms an emitter-detector setup that is bonded to the atom-chip surface to optically detect and probe laser cooled atoms trapped in a surface magneto-optical trap. We demonstrate the utility of this scheme by measuring the linewidth of the Cs D2 line at different laser intensities.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. W. Hansel, P. Hommelhoff, T.W. Hansch, J. Reichel, �??Bose-Einstein condensation on a microelectronic chip,�?? Nature 413, 498-501 (2001).
    [CrossRef] [PubMed]
  2. D. Cassettari, B. Hessmo, R. Folman, T. Maier, and J. Schmiedmayer, �??Beam Splitter for Guided Atoms,�?? Phys. Rev. Lett. 85, 5483-5487 (2000).
    [CrossRef]
  3. D. Casserati, A. Chenet, R. Folman, A. Haase, B. Hessmo, P. Kruger, T. Maier, S. Schneider, T. Calarco, J. Schmiedmayer, �??Micromanipulation of neutral atoms with nanofabricated structures,�?? Appl. Phys. B 70, 721-730 (2000).
    [CrossRef]
  4. J. Reichel, W. Hansel, P. Hommelhoff, T.W. Hansch, �??Applications of integrated magnetic microtraps,�?? Appl. Phys. B 72, 81-89 (2001).
    [CrossRef]
  5. H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, and C. Zimmermann, �??Bose-Einstein Condensation in a Surface Microtrap,�?? Phys. Rev. Lett. 87, 230401 (2001).
    [CrossRef] [PubMed]
  6. A.H. Barnett, S.P. Smith, M. Olshanii, K.S. Johnson, A.W. Adams, and M. Prentiss, �??Substrate-based atom waveguide using guided two color evanescent light fields,�?? PRA 61, 023608 (2000).
    [CrossRef]
  7. P. Horak, B.G. Klappauf, A. Haase, R. Folman, J Schmiedmayer, P. Domokos, and E.A. Hinds, �??Possibility of single-atom detection on a chip,�?? PRA 67, 043806 (2003).
    [CrossRef]
  8. A. Constable, Jinha Kim, J.Mervis, F. Zarinetchi, and M. Prentiss, �??Demonstration of a fiber-optical light-force trap,�?? Opt. Lett. 18, 1867-1869 (1993).
    [CrossRef] [PubMed]
  9. E.R. Lyons and G.J. Sonek, �??Confinement and bistability in a tapered hemispherically lensed optical fiber trap,�?? Appl. Phys. Lett. 66, 1584-1586, (1995).
    [CrossRef]
  10. R.C.Gauthier and A.Frangioudakis, �??Optical Levitation Particle Delivery System for a Dual Bem Fiber Optic Trap,�?? Appl. Opt. 39, 26-33, (2000).
    [CrossRef]
  11. M.T. Renn, D. Montgomery, O. Vdovin, D.Z. Anderson, C.E. Wieman, and E.A. Cornell, �??Laser-Guided Atoms in Hollow-Core Optical Fibers,�?? Phys. Rev. Lett. 75, 3253-3256, (1995).
    [CrossRef] [PubMed]
  12. The lensed fiber was obtained from the Corning division of photonic materials, corning optifocus.
  13. E.R.I. Abraham and E.A. Cornell, �??Teflon Feedthrough for Coupling Optical Fibers into Ultrahigh Vacuum Systems,�?? Appl. Opt. 37, 1762-1763 (1998).
    [CrossRef]
  14. M. Holmes, M. Tscherneck, P. A. Quinto-Su and N. P. Bigelow, �??Isotopic difference in the heteronuclear loss rate in a two species surface trap,�?? Phys. Rev. A 69, 063408, (2004).
    [CrossRef]
  15. H.J. Metcalf, Laser Cooling and Trapping, (Springer, New York, 1999).
    [CrossRef]
  16. D.A. Steck, Cesium D line Data.
  17. S. Kadlecek, J. Sebby, R. Newell, and T. G. Walker, �??Nondestructive spatial heterodyne imaging of cold atoms,�?? Opt. Lett. 26, 137-139 (2001).
    [CrossRef]
  18. P.J. Fox, T.R. Mackin, L.D. Turner, I. Colton, K.A. Nugent, and R.E. Scholten, �??Noninterferometric phase imaging of a neutral atomic beam,�?? J. Opt. Soc. Am B 19, 1773-1776 (2002).
    [CrossRef]
  19. R. Dumke, M. Volk, T. Muther, F.B.J. Buchkremer, G. Birkl, and W. Ertmer, �??Micro-optical Realization of Arrays of Selectively Addressable Dipole Traps: A Scalable Configuration for Quantum Computation with Atomic Qubits,�?? Phys. Rev. Lett. 89, 097903 (2002).
    [CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. B

D. Casserati, A. Chenet, R. Folman, A. Haase, B. Hessmo, P. Kruger, T. Maier, S. Schneider, T. Calarco, J. Schmiedmayer, �??Micromanipulation of neutral atoms with nanofabricated structures,�?? Appl. Phys. B 70, 721-730 (2000).
[CrossRef]

J. Reichel, W. Hansel, P. Hommelhoff, T.W. Hansch, �??Applications of integrated magnetic microtraps,�?? Appl. Phys. B 72, 81-89 (2001).
[CrossRef]

Appl. Phys. Lett.

E.R. Lyons and G.J. Sonek, �??Confinement and bistability in a tapered hemispherically lensed optical fiber trap,�?? Appl. Phys. Lett. 66, 1584-1586, (1995).
[CrossRef]

J. Opt. Soc. Am B

P.J. Fox, T.R. Mackin, L.D. Turner, I. Colton, K.A. Nugent, and R.E. Scholten, �??Noninterferometric phase imaging of a neutral atomic beam,�?? J. Opt. Soc. Am B 19, 1773-1776 (2002).
[CrossRef]

Nature

W. Hansel, P. Hommelhoff, T.W. Hansch, J. Reichel, �??Bose-Einstein condensation on a microelectronic chip,�?? Nature 413, 498-501 (2001).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev. A

M. Holmes, M. Tscherneck, P. A. Quinto-Su and N. P. Bigelow, �??Isotopic difference in the heteronuclear loss rate in a two species surface trap,�?? Phys. Rev. A 69, 063408, (2004).
[CrossRef]

Phys. Rev. Lett.

R. Dumke, M. Volk, T. Muther, F.B.J. Buchkremer, G. Birkl, and W. Ertmer, �??Micro-optical Realization of Arrays of Selectively Addressable Dipole Traps: A Scalable Configuration for Quantum Computation with Atomic Qubits,�?? Phys. Rev. Lett. 89, 097903 (2002).
[CrossRef] [PubMed]

D. Cassettari, B. Hessmo, R. Folman, T. Maier, and J. Schmiedmayer, �??Beam Splitter for Guided Atoms,�?? Phys. Rev. Lett. 85, 5483-5487 (2000).
[CrossRef]

M.T. Renn, D. Montgomery, O. Vdovin, D.Z. Anderson, C.E. Wieman, and E.A. Cornell, �??Laser-Guided Atoms in Hollow-Core Optical Fibers,�?? Phys. Rev. Lett. 75, 3253-3256, (1995).
[CrossRef] [PubMed]

H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, and C. Zimmermann, �??Bose-Einstein Condensation in a Surface Microtrap,�?? Phys. Rev. Lett. 87, 230401 (2001).
[CrossRef] [PubMed]

PRA

A.H. Barnett, S.P. Smith, M. Olshanii, K.S. Johnson, A.W. Adams, and M. Prentiss, �??Substrate-based atom waveguide using guided two color evanescent light fields,�?? PRA 61, 023608 (2000).
[CrossRef]

P. Horak, B.G. Klappauf, A. Haase, R. Folman, J Schmiedmayer, P. Domokos, and E.A. Hinds, �??Possibility of single-atom detection on a chip,�?? PRA 67, 043806 (2003).
[CrossRef]

Other

The lensed fiber was obtained from the Corning division of photonic materials, corning optifocus.

H.J. Metcalf, Laser Cooling and Trapping, (Springer, New York, 1999).
[CrossRef]

D.A. Steck, Cesium D line Data.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Configuration of the optical fibers. The lensed fiber (right) is coupled to the laser and the multimode fiber (left) takes the light into a photo-detector. The “fibers” on the bottom are reflections from the mirrored surface. The dark lines on the surface are the contours of etched wires. The separation between the fibers and the height are 4.5 mm and 0.6 mm respectively.

Fig. 2.
Fig. 2.

Fiber experimental setup.

Fig. 3.
Fig. 3.

Frequency scans for different intensities of the detection laser, the height of the peaks is the power scattered by the atoms. (a) I = 3.16 mW/cm2, P0 =55.4 nW with 1.4% scattered by the atoms. In (b) I = 0.8 mW/cm2, P0=12.1nW with 5% scattered. (c) I = 0.26 mW/cm2, P0=4 nW with 9.8% scattered.

Fig. 4.
Fig. 4.

Linewith as a function of s 0 = I/Is . The line is the theoretical linewidth γ = γ 1 + s 0

Fig. 5.
Fig. 5.

Power absorbed by the MMOT as a function of probe power. The error bars are statistical errors from different runs.

Metrics