Abstract

We report on the progress of bismuth oxide glass holey fibers for nonlinear device applications. The use of micron-scale core diameters has resulted in a very high nonlinearity of 1100 W-1 km-1 at 1550 nm. The nonlinear performance of the fibers is evaluated in terms of a newly introduced figure-of-merit for nonlinear device applications. Anomalous dispersion at 1550 nm has been predicted and experimentally confirmed by soliton self-frequency shifting. In addition, we demonstrate the fusion-splicing of a bismuth holey fiber to silica fibers, which has resulted in reduced coupling loss and robust single mode guiding at 1550 nm.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. T. M. Monro, and D. J. Richardson, "Holey optical fibres: Fundamental properties and device applications," C. R. Physique 4, 175 (2003).
    [CrossRef]
  2. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic Press, Inc., 1995).
  3. V. Finazzi, T.M. Monro, and D.J. Richardson, "Small-core silica holey fibers: nonlinearity and confinement loss trade-offs,�?? J. Opt. Soc. Am. B 20, 1427 (2003).
    [CrossRef]
  4. V. Kumar, A. K. George, W. H. Reeves, J. C. Knight, P. S. Russell, F. G. Omenetto, and A. J. Taylor, "Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation," Opt. Express 10, 1520-1525 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-25-1520">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-25-1520</a>.
    [CrossRef] [PubMed]
  5. P. Petropoulos, T. M. Monro, H. Ebendorff-Heidepriem, K. Frampton, R. C. Moore, and D. J. Richardson, "Highly nonlinear and anomalously dispersive lead silicate glass holey fibers," Opt. Express 11, 3568-3573 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-26-3568">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-26-3568</a>.
    [CrossRef] [PubMed]
  6. A. Mori, K. Shikano, W. Enbutsu, K. Oikawa, K. Naganuma, M. Kato, and S. Aozasa, "1.5 µm band zerodispersion shifted tellurite photonic crystal fibre with a nonlinear coefficient of 675 W-1 km-1,�?? presented at ECOC 2004, Stockholm, Sweden, 5-9 Sep 2004, Th3.3.6.
  7. H. Ebendorff-Heidepriem, P. Petropoulos, V. Finazzi, K. Frampton, R. Moore, D. J. Richardson, and T. M. Monro, "Highly nonlinear bismuth-oxide-based glass holey fiber," presented at OFC 2004, Los Angeles, California, USA, 2004, paper ThA4.
  8. N. Sugimoto, T. Nagashima, T. Hasegawa, S. Ohara, K. Taira, and K. Kikuchi, "Bismuth-based optical fiber with nonlinear coefficient of 1360 W-1 km-1," presented at OFC 2004, Los Angeles, California, USA, 2004, paper PDP26.
  9. P. Petropoulos, H. Ebendorff-Heidepriem, T. Kogure, K. Furusawa, V. Finazzi, T.M. Monro, and D. J. Richardson, "A spliced and connectorized highly nonlinear and anomalously dispersive bismuth-oxide glass holey fiber," presented at CLEO 2004, San Francisco, California, USA, 2004, paper CTuD.
  10. N. Sugimoto, H. Kanbara, S. Fujiwara, K. Tanaka, Y. Shimizugawa, and K. Hirao, �??Third-order optical nonlinearities and their ultrafast response in Bi2O3-B2O3-SiO2 glasses", J. Opt. Soc. Am. B 16, 1904-1908 (1999).
    [CrossRef]
  11. Y. Kuroiwa, N. Sugimoto, K. Ochiai, S. Ohara, Y. Furusawa, S. Ito, S. Tanabe, and T. Hanada, "Fusion spliceable and high efficient Bi2O3-based EDF for short length and broadband application pumped at 1480 nm," presented at OFC 2001, Anaheim, California, USA, 2001, paper TuI5.
  12. K. Kikuchi, K. Taira, and N. Sugimoto, "Highly nonlinear bismuth oxide-based glass fibers for all-optical signal processing," Electron. Lett. 38, 166-167 (2002).
    [CrossRef]
  13. K.M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Trucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, "Extruded single-mode non-silica glass holey optical fibres," Electron. Lett. 38, 546-547 (2002).
    [CrossRef]
  14. L. Farr, J.C. Knight, B.J. Mangan, and P.J. Roberts, "Low loss photonic crystal fibre," ECOC 2002, Copenhagen, Denmark, 8-12 Sep 2002, PD1.3 (Postdeadline).
  15. A. Boskovic, S. V. Chernikov, J. R. Taylor, L. Gruner Nielsen, and O. A. Levring, "Direct continuous-wave measurement of n(2) in various types of telecommunication fiber at 1.55 mu m," Opt. Lett. 21, 1966-1968 (1996).
    [CrossRef] [PubMed]
  16. T. Okuno, M. Onishi, T. Kashiwada, S. Ishikawa, and M. Nishimura, "Silica-based functional fibers with enhanced nonlinearity and their applications," IEEE J. Sel. Top. Quant. Electron. 5, 1385-1391 (1999).
    [CrossRef]
  17. J.H. Lee, W. Belardi, K. Furusawa, P. Petropoulos, Z. Yusoff, T.M. Monro, and D.J. Richardson, "Fourwave mixing based 10-Gb/s tunable wavelength conversion using a holey fiber with a high SBS threshold", IEEE Photon. Techn. Lett. 15, 440-442 (2003).
    [CrossRef]

C. R. Physique

T. M. Monro, and D. J. Richardson, "Holey optical fibres: Fundamental properties and device applications," C. R. Physique 4, 175 (2003).
[CrossRef]

CLEO 2004

P. Petropoulos, H. Ebendorff-Heidepriem, T. Kogure, K. Furusawa, V. Finazzi, T.M. Monro, and D. J. Richardson, "A spliced and connectorized highly nonlinear and anomalously dispersive bismuth-oxide glass holey fiber," presented at CLEO 2004, San Francisco, California, USA, 2004, paper CTuD.

ECOC 2002

L. Farr, J.C. Knight, B.J. Mangan, and P.J. Roberts, "Low loss photonic crystal fibre," ECOC 2002, Copenhagen, Denmark, 8-12 Sep 2002, PD1.3 (Postdeadline).

ECOC 2004

A. Mori, K. Shikano, W. Enbutsu, K. Oikawa, K. Naganuma, M. Kato, and S. Aozasa, "1.5 µm band zerodispersion shifted tellurite photonic crystal fibre with a nonlinear coefficient of 675 W-1 km-1,�?? presented at ECOC 2004, Stockholm, Sweden, 5-9 Sep 2004, Th3.3.6.

Electron. Lett.

K. Kikuchi, K. Taira, and N. Sugimoto, "Highly nonlinear bismuth oxide-based glass fibers for all-optical signal processing," Electron. Lett. 38, 166-167 (2002).
[CrossRef]

K.M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Trucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, "Extruded single-mode non-silica glass holey optical fibres," Electron. Lett. 38, 546-547 (2002).
[CrossRef]

IEEE J. Sel. Top. Quant. Electron.

T. Okuno, M. Onishi, T. Kashiwada, S. Ishikawa, and M. Nishimura, "Silica-based functional fibers with enhanced nonlinearity and their applications," IEEE J. Sel. Top. Quant. Electron. 5, 1385-1391 (1999).
[CrossRef]

IEEE Photon. Techn. Lett.

J.H. Lee, W. Belardi, K. Furusawa, P. Petropoulos, Z. Yusoff, T.M. Monro, and D.J. Richardson, "Fourwave mixing based 10-Gb/s tunable wavelength conversion using a holey fiber with a high SBS threshold", IEEE Photon. Techn. Lett. 15, 440-442 (2003).
[CrossRef]

J. Opt. Soc. Am. B

OFC 2001

Y. Kuroiwa, N. Sugimoto, K. Ochiai, S. Ohara, Y. Furusawa, S. Ito, S. Tanabe, and T. Hanada, "Fusion spliceable and high efficient Bi2O3-based EDF for short length and broadband application pumped at 1480 nm," presented at OFC 2001, Anaheim, California, USA, 2001, paper TuI5.

OFC 2004

H. Ebendorff-Heidepriem, P. Petropoulos, V. Finazzi, K. Frampton, R. Moore, D. J. Richardson, and T. M. Monro, "Highly nonlinear bismuth-oxide-based glass holey fiber," presented at OFC 2004, Los Angeles, California, USA, 2004, paper ThA4.

N. Sugimoto, T. Nagashima, T. Hasegawa, S. Ohara, K. Taira, and K. Kikuchi, "Bismuth-based optical fiber with nonlinear coefficient of 1360 W-1 km-1," presented at OFC 2004, Los Angeles, California, USA, 2004, paper PDP26.

Opt. Express

Opt. Lett.

Other

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic Press, Inc., 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) SEM image of HF #3 with 2.1 μm core and (b) predicted mode profile superimposed on the index profile of HF #1 with 2.7 μm core.

Fig. 2
Fig. 2

(a) Measured propagation loss of the HFs made from three individual preforms, (b) measured nonlinear phase shift as a function of input power yielding γ = 1100 W-1 km-1 from the slope of the linear fit for HF #3 with 1.8 μm core, and (c) calculated nonlinearity for a bismuth glass air-suspended rod and measured fiber nonlinearities.

Fig. 3
Fig. 3

(a) Raman soliton spectra at the output of 53cm of the 1.8 μm core HF with γ=1100 W-1 km-1 for different input pulse energies, (b) optical microscope image of bismuth HF to silica fiber splice and (c) IR image of the near field pattern of the connectorized HF.

Tables (1)

Tables Icon

Table 1. Fiber loss, effective nonlinear coefficient γ and effective fiber lengths at 1550 nm for highly nonlinear dispersion-shifted silica fiber (HN-DSF); for silica, lead silicate (SF57) and bismuth glass HFs and for conventional fibers (CFs) from bismuth glasses.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

γ = ( 2 π λ ) × ( n 2 A eff ) .
Δφ ( 2 P in ) = γ × L eff ,
L eff = [ 1 exp ( α × L ) ] α

Metrics