Abstract

A phase-locked, self-referenced frequency comb generated by a mode-locked fiber soliton laser with a tunable repetition rate is presented. The spacing of the frequency comb is set by the laser’s repetition rate, which can be scanned from 49.3 MHz to 50.1 MHz while one tooth of the comb is held phase-locked to a stable RF source. This variable repetition-rate frequency comb should be useful for wavelength and length metrology, synchronization of different fiber laser-based frequency combs, and the generation of precise swept wavelength sources.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M. F. Yan, and C. G. Jørgensen, "Phaselocked erbium-fiber-laser-based frequency comb in the near infrared," Opt. Lett. 29, 250-252 (2004).
    [CrossRef] [PubMed]
  2. I. Hartl, T. R. Schibili, G. Imbeshev, G. C. Cho, M. N. Fermann, K. Minoshima, A. Onae, F.-L. Hong, H. Matsumoto, J. W. Nicholson, and M. F. Yan, "Carrier envelope phase locking of an in-line, low-noise Er fiber system," in Proceedings of Conference on Lasers and Electro-Optics, Paper CMO4 (Optical Society of America, 2004), p. 59.
  3. H. Hundertmark, D. Wandt, N. Haverkamp, and H. R. Telle, "Phase-locked carrier-envelope-offset frequency at 1560 nm," Opt. Express 12, 770-775 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-770">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-770</a>.
    [CrossRef] [PubMed]
  4. Toptica Photonics Webpage, <a href="http://www.toptica.com/">http://www.toptica.com/</a>.
  5. Menlo Systems GmbH Webpage, <a href="http://www.menlosystems.com/">http://www.menlosystems.com/</a>.
  6. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrierenvelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-9 (2000).
    [CrossRef] [PubMed]
  7. T. Udem, R. Holzwarth, and T. W. Hänsch, "Optical Frequency Metrology," Nature 416, 233 (2002).
    [CrossRef] [PubMed]
  8. J. W. Nicholson, M. F. Yan, P. Wisk, J. Fleming, F. DiMarcello, E. Monberg, A. Yablon, C. G. Jørgensen, and T. Veng, "All-fiber, octave-spanning supercontinuum," Opt. Lett. 28, 643 (2003).
    [CrossRef] [PubMed]
  9. F. Tauser, A. Leitenstorfer, and W. Zinth, "Amplified femtosecond pulses from an Er:fiber system: Nonlinear pulse shortening and self-referencing detection of the carrier-envelope phase evolution," Opt. Express 11, 594-600 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-6-594">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-6-594</a>.
    [CrossRef] [PubMed]
  10. F.-L. Hong, K. Minoshima, A. Onae, H. Inaba, H. Takada, A. Hirai, H. Matsumoto, T. Sugiura, and M. Yoshida, "Broad-spectrum frequency comb generation and carrier-envelope offset frequency measurement by second harmonic generation of a mode-locked fiber laser," Opt. Lett. 28, 1-3 (2003).
    [CrossRef]
  11. K. Tamura, H. A. Haus, and E. P. Ippen, "Self-starting additive pulse mode-locked erbium fiber ring laser," Electron. Lett. 28, 2226-7 (1992).
    [CrossRef]
  12. H. Hundertmark, D. Kracht, M. Engelbrecht, D. Wandt, and C. Fallnich, "Stable sub-85 fs passively modelocked Erbium-fiber oscillator with tunable repetition rate," Opt. Express 12, 3178-3183 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3178">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3178</a>.
    [CrossRef] [PubMed]
  13. H. R. Telle, B. Lipphardt, and J. Stenger, "Kerr-lens, mode-locked lasers as transfer oscillators for optical frequency measurements," Appl. Phys. B 74, 1-6 (2002).
    [CrossRef]
  14. L.-S. Ma, M. Zucco, S. Picard, L. Robertsson, and R. S. Windeler, "A new method to determine the absolute mode number of a mode-locked femtosecond-laser comb used for absolute optical frequency measurements," IEEE J. Sel. Top. Quantum Electron. 9, 1066-1071 (2003).
    [CrossRef]
  15. L.-S. Ma, Z. Bi, A. Bartels, L. Robersson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, "Optical frequency synthesis and comparison with uncertainty at the 10-19 level," Science 303, 1843-1845 (2004).
    [CrossRef] [PubMed]
  16. J. W. Nicholson, P. S. Westbrook, K. S. Feder, and A. D. Yablon, "Supercontinuum generation in UV irradiated fibers," Opt. Lett. 29 (to be published).
    [PubMed]
  17. S. M. J. Kelly, "Characteristic sideband instability of periodically amplified average soliton," Electron. Lett. 28, 806-807 (1992).
    [CrossRef]
  18. B. R. Washburn and N. R. Newbury, "Phase, timing, and amplitude noise on supercontinua generated in microstructure fiber," Opt. Express 12, 2166 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2166">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2166</a>.
    [CrossRef] [PubMed]
  19. J. D. Jost, J. L. Hall, and J. Ye, "Continuously tunable, precise, single frequency optical signal generator," Opt. Express 10, 515-520 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-12-515">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-12-515</a>.
    [CrossRef] [PubMed]

Appl. Phys. B

H. R. Telle, B. Lipphardt, and J. Stenger, "Kerr-lens, mode-locked lasers as transfer oscillators for optical frequency measurements," Appl. Phys. B 74, 1-6 (2002).
[CrossRef]

Electron. Lett.

K. Tamura, H. A. Haus, and E. P. Ippen, "Self-starting additive pulse mode-locked erbium fiber ring laser," Electron. Lett. 28, 2226-7 (1992).
[CrossRef]

S. M. J. Kelly, "Characteristic sideband instability of periodically amplified average soliton," Electron. Lett. 28, 806-807 (1992).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

L.-S. Ma, M. Zucco, S. Picard, L. Robertsson, and R. S. Windeler, "A new method to determine the absolute mode number of a mode-locked femtosecond-laser comb used for absolute optical frequency measurements," IEEE J. Sel. Top. Quantum Electron. 9, 1066-1071 (2003).
[CrossRef]

Nature

T. Udem, R. Holzwarth, and T. W. Hänsch, "Optical Frequency Metrology," Nature 416, 233 (2002).
[CrossRef] [PubMed]

Opt. Express

H. Hundertmark, D. Wandt, N. Haverkamp, and H. R. Telle, "Phase-locked carrier-envelope-offset frequency at 1560 nm," Opt. Express 12, 770-775 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-770">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-770</a>.
[CrossRef] [PubMed]

B. R. Washburn and N. R. Newbury, "Phase, timing, and amplitude noise on supercontinua generated in microstructure fiber," Opt. Express 12, 2166 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2166">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2166</a>.
[CrossRef] [PubMed]

H. Hundertmark, D. Kracht, M. Engelbrecht, D. Wandt, and C. Fallnich, "Stable sub-85 fs passively modelocked Erbium-fiber oscillator with tunable repetition rate," Opt. Express 12, 3178-3183 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3178">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3178</a>.
[CrossRef] [PubMed]

J. D. Jost, J. L. Hall, and J. Ye, "Continuously tunable, precise, single frequency optical signal generator," Opt. Express 10, 515-520 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-12-515">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-12-515</a>.
[CrossRef] [PubMed]

F. Tauser, A. Leitenstorfer, and W. Zinth, "Amplified femtosecond pulses from an Er:fiber system: Nonlinear pulse shortening and self-referencing detection of the carrier-envelope phase evolution," Opt. Express 11, 594-600 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-6-594">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-6-594</a>.
[CrossRef] [PubMed]

Opt. Lett.

J. W. Nicholson, M. F. Yan, P. Wisk, J. Fleming, F. DiMarcello, E. Monberg, A. Yablon, C. G. Jørgensen, and T. Veng, "All-fiber, octave-spanning supercontinuum," Opt. Lett. 28, 643 (2003).
[CrossRef] [PubMed]

B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M. F. Yan, and C. G. Jørgensen, "Phaselocked erbium-fiber-laser-based frequency comb in the near infrared," Opt. Lett. 29, 250-252 (2004).
[CrossRef] [PubMed]

F.-L. Hong, K. Minoshima, A. Onae, H. Inaba, H. Takada, A. Hirai, H. Matsumoto, T. Sugiura, and M. Yoshida, "Broad-spectrum frequency comb generation and carrier-envelope offset frequency measurement by second harmonic generation of a mode-locked fiber laser," Opt. Lett. 28, 1-3 (2003).
[CrossRef]

J. W. Nicholson, P. S. Westbrook, K. S. Feder, and A. D. Yablon, "Supercontinuum generation in UV irradiated fibers," Opt. Lett. 29 (to be published).
[PubMed]

Proc. Conference Lasers Electro-Opt.

I. Hartl, T. R. Schibili, G. Imbeshev, G. C. Cho, M. N. Fermann, K. Minoshima, A. Onae, F.-L. Hong, H. Matsumoto, J. W. Nicholson, and M. F. Yan, "Carrier envelope phase locking of an in-line, low-noise Er fiber system," in Proceedings of Conference on Lasers and Electro-Optics, Paper CMO4 (Optical Society of America, 2004), p. 59.

Science

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrierenvelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-9 (2000).
[CrossRef] [PubMed]

L.-S. Ma, Z. Bi, A. Bartels, L. Robersson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, "Optical frequency synthesis and comparison with uncertainty at the 10-19 level," Science 303, 1843-1845 (2004).
[CrossRef] [PubMed]

Other

Toptica Photonics Webpage, <a href="http://www.toptica.com/">http://www.toptica.com/</a>.

Menlo Systems GmbH Webpage, <a href="http://www.menlosystems.com/">http://www.menlosystems.com/</a>.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig 1.
Fig 1.

Schematic of the fiber laser frequency comb. The CEO frequency is detected by a photodetector (PD), and is used to control the pump diode current. A piezoelectric transducer (PZT) fiber stretcher in the cavity allowed for adjustment of the repetition rate. The thick solid lines represent free-space paths, the thin solid lines represent fiber paths and the dotted lines represent electrical paths. BPF: Bandpass filter; SHG: second-harmonic generation.

Fig 2.
Fig 2.

(a) The spectrum from the output of the fiber laser. The spectral full-width at half maximum (FWHM) is 20 nm. (b) The measured intensity autocorrelation of the amplifier output. The FWHM of the autocorrelation trace is ~90 fs, which sets a reasonable upper limit to the pulse width as in Ref. [12]. The original laser output duration is ~210 fs FWHM.

Fig 3.
Fig 3.

(a) The octave-spanning supercontinuum generated in the UV-exposed highly nonlinear fiber. (b) RF power spectrum from mixing the 1030 nm portion of the supercontinuum with the frequency-doubled 2060 nm portion. The repetition rate signal (f r) at 49.8 MHz and CEO frequency (f 0) are clearly seen. The CEO beat frequency has a SNR of 20–25 dB.

Fig. 4.
Fig. 4.

The electronics used to phase-lock the CEO frequency. The f 0 signal from the f-to-2f interferometer was filtered at 120 MHz (with a 6.7 MHz bandwidth), mixed with a 1 GHz signal, divided, and compared to a 4.375 MHz signal. All synthesizers were referenced to a common time base. The CEO frequency change was ~15 MHz/mW of pump power. The total pump power was ~60 mW.

Fig. 5.
Fig. 5.

Scanning the laser’s repetition rate (f r) while the up-shifted CEO frequency (2f r+f 0) is phase-locked. The repetition rate and divided-down CEO frequency were counted with a gate time of 1 s. (a) The divided-down CEO frequency experiences no phase slip as the repetition rate is scanned over a 40 kHz span in 200 s. (b) The divided-down CEO frequency remains locked over an 800 kHz span with a scan velocity of 2.48 kHz/s. Occasional phase slips occur during the scan. (c) The scan velocity is increased to 9.91 kHz/s and small oscillations in the locked f 0 signal occur due to mechanical resonances of the delay line. (d) The scan velocity was increased to 19.8 kHz/s and the phase-lock was improved to prevent oscillations.

Fig. 6.
Fig. 6.

Scanning a CW laser locked to the variable repetition rate frequency comb. (a) The initial frequency comb (blue) with an offset frequency f 0 and an initial repetition rate f r where a CW laser (red) is locked to the n th tooth of the comb. (The dotted lines indicate the extension of the frequency comb to zero frequency). (b) The final frequency comb (purple) with the same offset frequency f 0 and a repetition rate f r that has been increased from f r to f rf r. At low frequencies (100 MHz) the shift of the comb lines is imperceptible on this scale. The CW laser (red) is assumed to be still locked to the n th tooth of the comb. As a result, its frequency has been increased by nδf r.

Metrics