Abstract

We present experimental results on the self-focusing of light beams in a photorefractive, optically active Bi12TiO20 crystal. Using circular polarization of the input HeNe laser beam we succeeded to create a stable self-focused, asymmetric light-beam over several hours. Depending on external parameters, like the external electric field and the intensity ratio, a transient symmetric state is observed.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. M. Shih, P. Leach, M. Segev, M. H. Garret, G. Salamo, and G. C. Valley, �??Two-dimensional steady-state photorefractive screening solitons,�?? Opt. Lett. 21, 324�??326 (1996).
    [CrossRef] [PubMed]
  2. G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, E. J. Sharp, and R. R. Neurgaonkar, �??Observation of self-trapping of an optical beam due to the photorefractive effect,�?? Phys. Rev. Lett. 71, 533�??536 (1993).
    [CrossRef] [PubMed]
  3. C. Weilnau, M. Ahles, J. Petter, D. Träger, J. Schröder, and C. Denz, �??Spatial optical (2+1)-dimensional scalarand vector-solitons in saturable nonlinear media,�?? Ann. Phys. (Leipzig) 11, 573-629 (2002).
    [CrossRef]
  4. E. Fazio, W. Ramadan, M. Bertolotti, A. Petris, and V. I. Vlad, �??Complete characterization of (2+1)D soliton formation in photorefractive crystals with strong optical activity,�?? J. Opt. A: Pure Appl. Opt. 5 S119�??S123 (2003).
    [CrossRef]
  5. M. D. Iturbe Castillo, P. A. Marquez Aguilar, J. J. Sanchez-Mondragon, S. Stepanov, and V. Vysloukh, �??Spatial solitons in photorefractive Bi12TiO20 with drift mechanism of nonlinearity,�?? Appl. Phys. Lett. 64, 408�??410 (1994).
    [CrossRef]
  6. N. Fressengeas, D. Wolfersberger, J. Maufoy, and G. Kugel, �??Experimental study of the self-focusing process temporal beahvior in photorefractive Bi12TiO20,�?? J. Appl. Phys. 85, 2062�??2067 (1999).
    [CrossRef]
  7. A. A. Zozulya, D. Z. Anderson, �??Nonstationary self-focusing in photorefractive media,�?? Opt. Lett. 20, 837�??839 (1995).
    [CrossRef] [PubMed]
  8. N. Fressengeas, D. Wolfersberger, J. Maufoy, and G. Kugel, �??Build up mechanisms of (1+1)-dimensional photorefractive bright spatial quasi-steady-state and screening solitons,�?? Opt. Commun. 145, 393�??400 (1998
    [CrossRef]
  9. M. Wesner, C. Herden, R. Pankrath, D. Kip, and P. Moretti, �??Temporal development of photorefractive solitons up to telecommunication wavelengths in strontium-barium niobate waveguides,�?? Phys. Rev. E 64, 036613- �??036613-4 (2001).
    [CrossRef]
  10. C. Hesse, N. Fressengeas, D. Wolfersberger, and G. Kugel, �??Self-focusing of a continuous laser beam in KnbO3 in the presence of an externally applied electric field,�?? Opt. Mat. 18, 187�??190 (2001).
    [CrossRef]
  11. N. Fressengeas, J. Maufoy, and G. Kugel, �??Temporal behavior of bidimensional photorefractive bright spatial solitons,�?? Phys. Rev. E 54, 6866�??6875 (1996).
    [CrossRef]
  12. W. Królikowski, N. Akhmediev, D. R. Andersen, and B. Luther-Davis, �??Effect of natural optical activity on the propagation of photorefractive solitons,�?? Opt. Commun. 132, 179�??189 (1996).
    [CrossRef]
  13. M. Segev, M. Shih, and G. C. Valley, �??Photorefractive screening solitons of high and low intensity,�?? J. Opt. Soc. Am. B 13, 706�??718 (1996).
    [CrossRef]
  14. G. S. García Quirino, M. D. Iturbe Castillo, J. J. Sánchez-Mondragón, S. Stepanov, and V. Vysloukh, �??Intrferometric measurements of the photoinduced refractive index profiles in photorefractive Bi12TiO20 crystal,�?? Opt. Commun. 123, 597�??602 (1996).
    [CrossRef]
  15. A. A. Zozulya, D. Z. Anderson, �??Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric field,�?? Phys. Rev. A 51, 1520�??1531 (1995).
    [CrossRef] [PubMed]
  16. N. Korneev, P. A. Márquez Aguilar, J. J. Sánchez Mondragón, S. Stepanov, M. Klein, and B. Wechsler, �??Anisotropy of steady-state two-dimensional lenses in photorefractive crystals with drift nonlinearity,�?? J. Mod. Opt. 43, 311�??321 (1996).
    [CrossRef]

Ann. Phys. (1)

C. Weilnau, M. Ahles, J. Petter, D. Träger, J. Schröder, and C. Denz, �??Spatial optical (2+1)-dimensional scalarand vector-solitons in saturable nonlinear media,�?? Ann. Phys. (Leipzig) 11, 573-629 (2002).
[CrossRef]

Appl. Phys. Lett. (1)

M. D. Iturbe Castillo, P. A. Marquez Aguilar, J. J. Sanchez-Mondragon, S. Stepanov, and V. Vysloukh, �??Spatial solitons in photorefractive Bi12TiO20 with drift mechanism of nonlinearity,�?? Appl. Phys. Lett. 64, 408�??410 (1994).
[CrossRef]

J. Appl. Phys. (1)

N. Fressengeas, D. Wolfersberger, J. Maufoy, and G. Kugel, �??Experimental study of the self-focusing process temporal beahvior in photorefractive Bi12TiO20,�?? J. Appl. Phys. 85, 2062�??2067 (1999).
[CrossRef]

J. Mod. Opt. (1)

N. Korneev, P. A. Márquez Aguilar, J. J. Sánchez Mondragón, S. Stepanov, M. Klein, and B. Wechsler, �??Anisotropy of steady-state two-dimensional lenses in photorefractive crystals with drift nonlinearity,�?? J. Mod. Opt. 43, 311�??321 (1996).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

E. Fazio, W. Ramadan, M. Bertolotti, A. Petris, and V. I. Vlad, �??Complete characterization of (2+1)D soliton formation in photorefractive crystals with strong optical activity,�?? J. Opt. A: Pure Appl. Opt. 5 S119�??S123 (2003).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (3)

W. Królikowski, N. Akhmediev, D. R. Andersen, and B. Luther-Davis, �??Effect of natural optical activity on the propagation of photorefractive solitons,�?? Opt. Commun. 132, 179�??189 (1996).
[CrossRef]

G. S. García Quirino, M. D. Iturbe Castillo, J. J. Sánchez-Mondragón, S. Stepanov, and V. Vysloukh, �??Intrferometric measurements of the photoinduced refractive index profiles in photorefractive Bi12TiO20 crystal,�?? Opt. Commun. 123, 597�??602 (1996).
[CrossRef]

N. Fressengeas, D. Wolfersberger, J. Maufoy, and G. Kugel, �??Build up mechanisms of (1+1)-dimensional photorefractive bright spatial quasi-steady-state and screening solitons,�?? Opt. Commun. 145, 393�??400 (1998
[CrossRef]

Opt. Lett. (2)

Opt. Mat. (1)

C. Hesse, N. Fressengeas, D. Wolfersberger, and G. Kugel, �??Self-focusing of a continuous laser beam in KnbO3 in the presence of an externally applied electric field,�?? Opt. Mat. 18, 187�??190 (2001).
[CrossRef]

Phys. Rev. A (1)

A. A. Zozulya, D. Z. Anderson, �??Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric field,�?? Phys. Rev. A 51, 1520�??1531 (1995).
[CrossRef] [PubMed]

Phys. Rev. E (2)

N. Fressengeas, J. Maufoy, and G. Kugel, �??Temporal behavior of bidimensional photorefractive bright spatial solitons,�?? Phys. Rev. E 54, 6866�??6875 (1996).
[CrossRef]

M. Wesner, C. Herden, R. Pankrath, D. Kip, and P. Moretti, �??Temporal development of photorefractive solitons up to telecommunication wavelengths in strontium-barium niobate waveguides,�?? Phys. Rev. E 64, 036613- �??036613-4 (2001).
[CrossRef]

Phys. Rev. Lett. (1)

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, E. J. Sharp, and R. R. Neurgaonkar, �??Observation of self-trapping of an optical beam due to the photorefractive effect,�?? Phys. Rev. Lett. 71, 533�??536 (1993).
[CrossRef] [PubMed]

Supplementary Material (2)

» Media 1: AVI (1000 KB)     
» Media 2: AVI (760 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental set-up for the verification of self-focusing in BTO. F - filter, P - polarizer, BS - beam splitter cube, L - focusing lens, U 0 - external voltage, I - imaging system, CCD - CCD camera.

Fig. 2.
Fig. 2.

Temporal development of the beam width both parallel (horizontal) and perpendicular (vertical) to the externally applied electric field E 0. r = 27, E 0 = 28.1 kV/cm.

Fig. 3.
Fig. 3.

Intensity profiles of the output beam in (a) the quasi-steady state (after 7 s) and (b) the steady state (after 2 min), both parallel (horizontal) and perpendicular (vertical) to the externally applied electric field, with the parameters from Fig. 2. (The profiles in (a) are shifted against each other for better viewing.)

Fig. 4.
Fig. 4.

Movies of the temporal development of the beam width at the exit face of the crystal, with the parameters from Fig. 2. (a) Quasi-steady state, t = 0…60 s (1.25 frames/s, 168 kB), (b) parts of the steady state, t = 3.3…6.5 h (1 frame/160 s, 120 kB).

Fig. 5.
Fig. 5.

Temporal development of the beam width parallel to the external field E 0 for different intensity ratios r. E 0 = 28,1 kV/cm. (The curve for r = 4 is shifted downwards for about 35 μm for better viewing.)

Fig. 6.
Fig. 6.

Temporal development of the beam width parallel to the external field for different values of E 0. r = 11.

Metrics