Abstract

Phase-sensitive amplification (PSA) has the potential to improve significantly the performance of optical communication systems. PSA is known to occur in �?(2) devices, and in a fiber interferometer, which is an example of a �?(3) device. In this report some four-wave mixing processes are described, which produce PSA directly in fibers.

© 2004 Optical Society of America

PDF Article

References

  • View by:
  • |

  1. R. Loudon, �??Theory of noise accumulation in linear optical-amplifier chains,�?? IEEE J. Quantum Electron. 21, 766�??773 (1985).
    [CrossRef]
  2. H. P. Yuen, �??Reduction of quantum fluctuation and suppression of the Gordon�??Haus effect with phase-sensitive linear amplifiers,�?? Opt. Lett. 17, 73�??75 (1992).
  3. Y. Mu and C. M. Savage, �??Parametric amplifiers in phase-noise-limited optical communications,�?? J. Opt. Soc. Am. B 9, 65�??70 (1992)
  4. R. D. Li, P. Kumar, W. L. Kath and J. N. Kutz, �??Combating dispersion with parametric amplifers,�?? IEEE Photon. Technol. Lett. 5, 669�??672 (1993).
    [CrossRef]
  5. W. Imajuku and A. Takada, �??Reduction of fiber-nonlinearity-enhanced amplifier noise by means of phase-sensitive amplifiers,�?? Opt. Lett. 22, 31�??33 (1997)
  6. R. Loudon, The Quantum Theory of Light, 3rd Ed. (Oxford University Press, Oxford, 2000)
  7. H. P. Yuen and J. H. Shapiro, �??Generation and detection of two-photon coherent states in degenerate four-wave mixing,�?? Opt. Lett. 4, 334�??336 (1979).
  8. B. Yurke, �??Use of cavities in squeezed-state-generation,�?? Phys. Rev. A 29, 408�??410 (1984).
    [CrossRef]
  9. P. Kumar and J. H. Shapiro, �??Squeezed-state generation via forward degenerate four-wave mixing,�?? Phys. Rev. A 30, 1568�??1571 (1984).
    [CrossRef]
  10. M. D. Levenson, R. M. Shelby, A. Aspect, M. Reid and D. F.Walls, �??Generation and detection of squeezed states of light by nondegenerate four-wave mixing in an optical fiber,�?? Phys. Rev. A 32, 1550�??1562 (1985).
    [CrossRef]
  11. M. J. Potasek and B. Yurke, �??Squeezed light generation in a medium governed by the nonlinear Schrödinger equation,�?? Phys. Rev. A 35, 3974�??3977 (1987).
    [CrossRef]
  12. T. A. B. Kennedy and S. Wabnitz, �??Quantum propagation: Squeezing via modulational polarization instabilities in a birefringent nonlinear medium,�?? Phys. Rev. A 38, 563�??566 (1988).
    [CrossRef]
  13. M. Shirasaki and H. A. Haus, �??Squeezing of pulses in a nonlinear interferometer,�?? J. Opt. Soc. Am. B 7, 30�??34 (1990).
  14. M. E. Marhic and C. H. Hsia, �??Optical amplification in a nonlinear interferometer,�?? Electron. Lett. 27, 210�??211 (1991).
    [CrossRef]
  15. P. Narum and R. W. Boyd, �??Nonfrequency-shifted phase conjugation by Brillouin-enhanced four-wave mixing,�?? IEEE J. Quantum Electron. 23, 1211�??1216 (1987).
    [CrossRef]
  16. C. J. McKinstrie, S. Radic and A. R. Chraplyvy, �??Parametric amplifiers driven by two pump waves,�?? IEEE J. Sel. Top. Quantum Electron. 8, 538�??547 and 956 (2002), and references therein.
  17. C. J. McKinstrie, S. Radic and C. Xie, �??Parametric instabilities driven by orthogonal pump waves in birefringent fibers,�?? Opt. Express 11, 2619�??2633 (2003) and references therein.
  18. C. J. McKinstrie, H. Kogelnik, R. M. Jopson, S. Radic and A. V. Kanaev, �??Four-wave mixing in fibers with random birefringence,�?? Opt. Express 12, 2033�??2055 (2004) and refrences therein.
    [CrossRef]

Electron. Lett. (1)

M. E. Marhic and C. H. Hsia, �??Optical amplification in a nonlinear interferometer,�?? Electron. Lett. 27, 210�??211 (1991).
[CrossRef]

IEEE J. Quantum Electron. (2)

P. Narum and R. W. Boyd, �??Nonfrequency-shifted phase conjugation by Brillouin-enhanced four-wave mixing,�?? IEEE J. Quantum Electron. 23, 1211�??1216 (1987).
[CrossRef]

R. Loudon, �??Theory of noise accumulation in linear optical-amplifier chains,�?? IEEE J. Quantum Electron. 21, 766�??773 (1985).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

C. J. McKinstrie, S. Radic and A. R. Chraplyvy, �??Parametric amplifiers driven by two pump waves,�?? IEEE J. Sel. Top. Quantum Electron. 8, 538�??547 and 956 (2002), and references therein.

IEEE Photon. Technol. Lett. (1)

R. D. Li, P. Kumar, W. L. Kath and J. N. Kutz, �??Combating dispersion with parametric amplifers,�?? IEEE Photon. Technol. Lett. 5, 669�??672 (1993).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. A (5)

B. Yurke, �??Use of cavities in squeezed-state-generation,�?? Phys. Rev. A 29, 408�??410 (1984).
[CrossRef]

P. Kumar and J. H. Shapiro, �??Squeezed-state generation via forward degenerate four-wave mixing,�?? Phys. Rev. A 30, 1568�??1571 (1984).
[CrossRef]

M. D. Levenson, R. M. Shelby, A. Aspect, M. Reid and D. F.Walls, �??Generation and detection of squeezed states of light by nondegenerate four-wave mixing in an optical fiber,�?? Phys. Rev. A 32, 1550�??1562 (1985).
[CrossRef]

M. J. Potasek and B. Yurke, �??Squeezed light generation in a medium governed by the nonlinear Schrödinger equation,�?? Phys. Rev. A 35, 3974�??3977 (1987).
[CrossRef]

T. A. B. Kennedy and S. Wabnitz, �??Quantum propagation: Squeezing via modulational polarization instabilities in a birefringent nonlinear medium,�?? Phys. Rev. A 38, 563�??566 (1988).
[CrossRef]

Other (1)

R. Loudon, The Quantum Theory of Light, 3rd Ed. (Oxford University Press, Oxford, 2000)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics