Abstract

We report a simple and efficient method to achieve visible light by sum-frequency mixing radiation from a diode-pumped solid-state laser and a laser diode in a periodically poled KTiOPO4 crystal. Since high-power laser diodes are available at a wide range of wavelengths, it is thereby possible to obtain essentially any wavelength in the visible spectrum by appropriate choice of lasers. For demonstration we choose to construct a light source in the blue-green region. A turquoise output power of 4.0 mW was achieved.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. Webjörn, F. Laurell and G. Arvidsson: �??Blue light generated by frequency doubling of laser diode light in a lithium niobate channel waveguide,�?? IEEE Photon. Technol. Lett. 1, 316-318 (1989).
    [CrossRef]
  2. F. Laurell: �??Periodically poled materials for miniature light sources,�?? Opt. Mat. 11, 235-244 (1999).
    [CrossRef]
  3. T.D. Raymond, W.J. Alford, M.H. Crawford and A.A. Allerman: �??Intracavity frequency doubling of a diode-pumped external-cavity surface-emitting semiconductor laser,�?? Opt. Lett. 24, 1127-1129 (1999).
    [CrossRef]
  4. A. Caprara, J.L. Chilla and L.A. Spinelli: �??High power external-cavity optically-pumped semiconductor lasers,�?? US Patent 6,097,742 (2000).
  5. E. Schielen, M. Golling and P. Unger: �??Diode-pumped semiconductor disk laser with intracavity frequency doubling using lithium triborate (LBO),�?? IEEE Photonics Technol. Lett. 14, 777-779 (2002).
    [CrossRef]
  6. E.U. Rafailov, W. Sibbett, A. Mooradian, J. G. McInerney, H. Karlsson, S. Wang and F.Laurell: �??Efficient frequency doubling of a vertical-extended-cavity-surface-emitting laser diode by use of a periodically poled KTP crystal,�?? Opt. Lett. 28, 2091-2093 (2003).
    [CrossRef] [PubMed]
  7. M. A. Holm, D. Burns, A.I. Ferguson and M.D. Dawson: �??Single-frequency second-harmonic generation in a vertical external�??cavity semiconductor laser,�?? Conference on Lasers and Electro-Optics (CLEO 2000), TOPS Vol.39, 2000, pp. 440-441.
  8. D. Woll, B. Beier, K.J. Boller, R. Wallenstein, M. Hagberg and S. O�??Brien: �??1 W of blue 465-nm radiation generated by frequency doubling of the output of a high-power diode laser in critically phase-matched LiB3O5,�?? Opt. Lett. 24, 691-693 (1999).
    [CrossRef]
  9. D. Woll, J. Schumacher, A. Robertson, M. A. Tremont, R. Wallenstein, M. Katz, D. Eger and A. Englander: �??250 mW of coherent blue 460-nm light generated by single-pass frequency doubling of the output of a mode-locked high-power diode laser in periodically poled KTP,�?? Opt. Lett. 27, 1055-1057 (2002).
    [CrossRef]
  10. J.C. Bienfang, C.A. Denman, B.W. Grime, P.D. Hillman, G.T. Moore and J.M. Telle: �??20 W of continuous-wave sodium D2 resonance radiation from sum-frequency generation with injection-locked lasers,�?? Opt. Lett. 28, 2219-2221 (2003).
    [CrossRef] [PubMed]
  11. N. Saito, K. Akagawa, Y. Hayano, Y. Saito, H. Takami and S. Wada: �??An efficient method for quasi-continuous-wave generation of 589 nm by sum-frequency mixing in periodically poled KTP,�?? in Advanced Solid-State Photonics, J. J. Zayhowski and G.J. Quarles, eds., Nineteenth Topical Meeting and Tabletop Exhibit (Optical Society of America, Santa Fe, New Mexico, 2004).
  12. S. Guha and J. Falk: �??The effects of focusing in three-frequency parametric upconverter,�?? J. Appl. Phys. 51, (1), 50-60 (1980).
    [CrossRef]
  13. M. M. Fejer, G. A. Magel, D. H. Jundt and R. L. Byer: �??Quasi-Phase-Matched Second Harmonic Generation: Tuning and Tolerances,�?? IEEE J. Quantum Electron. 28, 2631-2654 (1992).
    [CrossRef]
  14. W.P. Risk, T.R. Gosnell and A.V. Nurmikko, Compact Blue-Green Lasers (Cambridge University Press, 2003).
    [CrossRef]
  15. S. Spiekermann, F.Laurell, V. Pasiskevicius, H. Karlsson and I. Freitag: �??Optimizing non-resonant frequency conversion in periodically poled media,�?? Appl. Phys. B 79, 211-219 (2004).
    [CrossRef]

Advanced Solid-State Photonics 2004

N. Saito, K. Akagawa, Y. Hayano, Y. Saito, H. Takami and S. Wada: �??An efficient method for quasi-continuous-wave generation of 589 nm by sum-frequency mixing in periodically poled KTP,�?? in Advanced Solid-State Photonics, J. J. Zayhowski and G.J. Quarles, eds., Nineteenth Topical Meeting and Tabletop Exhibit (Optical Society of America, Santa Fe, New Mexico, 2004).

Appl. Phys. B

S. Spiekermann, F.Laurell, V. Pasiskevicius, H. Karlsson and I. Freitag: �??Optimizing non-resonant frequency conversion in periodically poled media,�?? Appl. Phys. B 79, 211-219 (2004).
[CrossRef]

IEEE J. Quantum Electron.

M. M. Fejer, G. A. Magel, D. H. Jundt and R. L. Byer: �??Quasi-Phase-Matched Second Harmonic Generation: Tuning and Tolerances,�?? IEEE J. Quantum Electron. 28, 2631-2654 (1992).
[CrossRef]

IEEE Photon. Technol. Lett.

J. Webjörn, F. Laurell and G. Arvidsson: �??Blue light generated by frequency doubling of laser diode light in a lithium niobate channel waveguide,�?? IEEE Photon. Technol. Lett. 1, 316-318 (1989).
[CrossRef]

IEEE Photonics Technol. Lett.

E. Schielen, M. Golling and P. Unger: �??Diode-pumped semiconductor disk laser with intracavity frequency doubling using lithium triborate (LBO),�?? IEEE Photonics Technol. Lett. 14, 777-779 (2002).
[CrossRef]

J. Appl. Phys.

S. Guha and J. Falk: �??The effects of focusing in three-frequency parametric upconverter,�?? J. Appl. Phys. 51, (1), 50-60 (1980).
[CrossRef]

Opt. Lett.

Opt. Mat.

F. Laurell: �??Periodically poled materials for miniature light sources,�?? Opt. Mat. 11, 235-244 (1999).
[CrossRef]

OSA TOPS Series 2000

M. A. Holm, D. Burns, A.I. Ferguson and M.D. Dawson: �??Single-frequency second-harmonic generation in a vertical external�??cavity semiconductor laser,�?? Conference on Lasers and Electro-Optics (CLEO 2000), TOPS Vol.39, 2000, pp. 440-441.

US Patent 6,097,742 (2000)

A. Caprara, J.L. Chilla and L.A. Spinelli: �??High power external-cavity optically-pumped semiconductor lasers,�?? US Patent 6,097,742 (2000).

Other

W.P. Risk, T.R. Gosnell and A.V. Nurmikko, Compact Blue-Green Lasers (Cambridge University Press, 2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

The first version of the experimental set-up.

Fig. 2.
Fig. 2.

The turquoise output power as a function of the temperature of the PPKTP crystal. The measured data is represented by the squares and the curve is a sinc-fit of the data. The temperature bandwidth, ΔT = 5.8 °C.

Fig. 3.
Fig. 3.

Turquoise CW output power measured for fixed LD power (at 280 mW) and changing the DPSSL power.

Fig. 4.
Fig. 4.

Noise spectra of the turquoise light (upper) and detection system noise (lower). Relaxation oscillations originating from the DPSSL are present at 2.3 MHz.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η SFM = P 3 P 1 · P 2 · L ,

Metrics