Abstract

In this paper we present a novel approach to monitoring the deformations of a steel plate’s surface during various types of laser processing, e.g., engraving, marking, cutting, bending, and welding. The measuring system is based on a laser triangulation principle, where the laser projector generates multiple lines simultaneously. This enables us to measure the shape of the surface with a high sampling rate (80 Hz with our camera) and high accuracy (±7 μm). The measurements of steel-plate deformations for plates of different thickness and with different illumination patterns are presented graphically and in an animation.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. V. Kovalenko, R. Zhuk, �??Systemized approach in laser industrial systems design,�?? J. Mat. Processing Technol. 149 (1-3), 553-556 (2004).
    [CrossRef]
  2. K. G. Watkins, S.P. Edwardson, J. Magee, G. Dearden, P. French, �??Laser Forming of Aerospace Alloys,�?? Proceedings of the 2001 Aerospace Congress SAE Aerospace Manufacturing Technology Conference Seattle (2001).
  3. M. Dovc, J. Možina, F. Kosel, �??Optimizing the final deformation of a circular plate illuminated by a short laser pulse,�?? J. Phys. D: Appl. Phys. 32, 644-649 (1999).
    [CrossRef]
  4. L. Zhang, P. Michaleris, �??Investigation of Lagrangian and Eulerian finite element methods for modeling the laser forming process,�?? Finite Elements in Analysis and Design 40(4), 383-405 (2004).
    [CrossRef]
  5. Bao, J., Yao, Y. L., "Analysis and Prediction of Edge Effects in Laser Bending," ASME Trans. J. Manufacturing Sci. Eng. 123(1), 53-61 (2001).
    [CrossRef]
  6. Jitae Kim, S. J. Na, �??Feedback control for 2D free curve laser forming,�?? Optics & Laser Technology In Press, Corrected Proof, Available online 26 April 2004.
  7. G. Thomson, M. Pridham, �??A feedback control system for laser forming,�?? Mechatronics 7(5), 429-441 (1997).
    [CrossRef]
  8. An. K. Kyrsanidi, Th. B. Kermanidis, Sp. G. Pantelakis, �??Numerical and experimental investigation of the laser forming process,�?? J. Mat. Processing Technol. 87(1-3), 281-290 (1999).
    [CrossRef]
  9. H.S. Hsieh, J. Lin, �??Thermal�??mechanical analysis on the transient deformation during pulsed laser forming,�?? International J. Machine Tools and Manufacture 4 (2-3), 191-199 (2004).
  10. Z. Hu, R. Kovacevic, M. Labudovic, �??Experimental and numerical modeling of buckling instability of laser sheet forming,�?? International Journal of Machine Tools and Manufacture 42(13), 1427-1439 (2002).
  11. M. Reeves, A. J. Moore, D. P. Hand, and J. D. C. Jones, �??Dynamic shape measurement system for laser materials processing,�?? Opt. Eng. 42(10), 2923-2929 (2003).
    [CrossRef]
  12. B. Curless, New Methods for Surface Reconstruction from Range Images (Stanford - Ph.D. Dissertation 1997).
  13. DIN 17222, �??Kaltgewalzte Stahlbänder für Federen,�?? Deutsche Normen August 1997.
  14. Bracun D., Jezeršek M., Možina J., �??Apparatus for determining size and shape of a foot,�?? PCT patent nr. WO2004037085 (2004).

. Mat. Processing Technol. (1)

An. K. Kyrsanidi, Th. B. Kermanidis, Sp. G. Pantelakis, �??Numerical and experimental investigation of the laser forming process,�?? J. Mat. Processing Technol. 87(1-3), 281-290 (1999).
[CrossRef]

2001 Aerospace Congress SAE Aerospace Ma (1)

K. G. Watkins, S.P. Edwardson, J. Magee, G. Dearden, P. French, �??Laser Forming of Aerospace Alloys,�?? Proceedings of the 2001 Aerospace Congress SAE Aerospace Manufacturing Technology Conference Seattle (2001).

ASME Trans. J. Manufacturing Sci. Eng. (1)

Bao, J., Yao, Y. L., "Analysis and Prediction of Edge Effects in Laser Bending," ASME Trans. J. Manufacturing Sci. Eng. 123(1), 53-61 (2001).
[CrossRef]

Experimental and numerical modeling of b (1)

Z. Hu, R. Kovacevic, M. Labudovic, �??Experimental and numerical modeling of buckling instability of laser sheet forming,�?? International Journal of Machine Tools and Manufacture 42(13), 1427-1439 (2002).

Finite Elements in Analysis and Design (1)

L. Zhang, P. Michaleris, �??Investigation of Lagrangian and Eulerian finite element methods for modeling the laser forming process,�?? Finite Elements in Analysis and Design 40(4), 383-405 (2004).
[CrossRef]

International J. Machine Tools and Manuf (1)

H.S. Hsieh, J. Lin, �??Thermal�??mechanical analysis on the transient deformation during pulsed laser forming,�?? International J. Machine Tools and Manufacture 4 (2-3), 191-199 (2004).

J. Mat. Processing Technol. (1)

V. Kovalenko, R. Zhuk, �??Systemized approach in laser industrial systems design,�?? J. Mat. Processing Technol. 149 (1-3), 553-556 (2004).
[CrossRef]

J. Phys. D: Appl. Phys. (1)

M. Dovc, J. Možina, F. Kosel, �??Optimizing the final deformation of a circular plate illuminated by a short laser pulse,�?? J. Phys. D: Appl. Phys. 32, 644-649 (1999).
[CrossRef]

Mechatronics (1)

G. Thomson, M. Pridham, �??A feedback control system for laser forming,�?? Mechatronics 7(5), 429-441 (1997).
[CrossRef]

Opt. Eng. (1)

M. Reeves, A. J. Moore, D. P. Hand, and J. D. C. Jones, �??Dynamic shape measurement system for laser materials processing,�?? Opt. Eng. 42(10), 2923-2929 (2003).
[CrossRef]

Optics & Laser Technology (1)

Jitae Kim, S. J. Na, �??Feedback control for 2D free curve laser forming,�?? Optics & Laser Technology In Press, Corrected Proof, Available online 26 April 2004.

Other (3)

B. Curless, New Methods for Surface Reconstruction from Range Images (Stanford - Ph.D. Dissertation 1997).

DIN 17222, �??Kaltgewalzte Stahlbänder für Federen,�?? Deutsche Normen August 1997.

Bracun D., Jezeršek M., Možina J., �??Apparatus for determining size and shape of a foot,�?? PCT patent nr. WO2004037085 (2004).

Supplementary Material (2)

» Media 1: GIF (2740 KB)     
» Media 2: GIF (3335 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental set-up.

Fig. 2.
Fig. 2.

Plate deformation during laser-spot illumination. The beam diameter was 200 μm for the first row, and 1 mm for the second row. The illumination time was 2 sec in both cases. The vertical axes in the graphs are magnified 10 times. [Media 1]

Fig. 3.
Fig. 3.

Plate deformation during laser illumination with a linear beam-propagation path. The image shows the plate deformation during the third scan at the moment when the beam reaches ¾ of the plate width. The vertical axis is magnified 10 times. [Media 2]

Fig. 4.
Fig. 4.

Plate deformation after laser drilling with various frequencies.

Fig. 5.
Fig. 5.

Laser-based flattening of a convex-shaped plate deformation.

Metrics