Abstract

A crucial issue in optical packet switched (OPS) networks is packet losses at the network layer caused by contentions. This paper presents the network layer packet redundancy scheme (NLPRS), which is a novel approach to reduce the end-to-end data packet loss rate in OPS networks. By introducing redundancy packets in the OPS network, the NLPRS enables a possible reconstruction of data packets that are lost due to contentions. An analytical model of the NLPRS based on reduced load Erlang fix-point analysis is presented. Simulations of an OPS ring network show that the NLPRS is in particular efficient in small networks operating at low system loads. Results also show how the arrival process, packet length distribution, network size and redundancy packet scheduling mechanism influence the NLPRS performance.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. R. Ramaswami and K. N. Sivarajan, Optical Networks: A Practical Perspective (Morgan Kaufmann, 2002).
  2. M. J. O�??Mahony, D. Simeonidou, D. K. Hunter and A. Tzanakaki, �??The Application of Optical Packet Switching in Future Communication Networks,�?? IEEE Communications Magazine 39(3) (2001) 128-135.
    [CrossRef]
  3. L. Dittmann et al., �??The European IST Project DAVID: A Viable Approach Toward Optical Packet Switching,�?? IEEE Journal on Selected Areas in Communications 21(7) (2003) 1026-1040.
    [CrossRef]
  4. J. S. Turner, �??Terabit burst switching,�?? Journal of High Speed Networks 8(1) (1999) 3-16.
  5. M. Yoo, C. Qiao and S. Dixit, �??QoS Performance of Optical Burst Switching in IP-Over-WDM Networks,�?? IEEE Journal on Selected Areas in Communications 18(10) (2000) 2062-2071.
    [CrossRef]
  6. S. Yao, B. Mukherjee, S. J. Ben Yoo and S. Dixit, �??A Unified Study of Contention-Resolution Schemes in Optical Packet-Switched Networks,�?? IEEE Journal of Lightwave Technology 21(3) (2003) 672-683.
    [CrossRef]
  7. S. L. Danielsen, C. Joergensen, B. Mikkelsen and K. E. Stubkjaer, �??Optical Packet Switched Network Layer Without Optical Buffers,�?? IEEE Photonics Technology Letters 10(6) (1998) 896-898.
    [CrossRef]
  8. Y. Chen, H. Wu, D. Xu and C. Qiao, �??Performance Analysis of Optical Burst Switched Node with Deflection Routing,�?? in Proceedings of International Conference on Communication, pp. 1355-1359, 2003.
  9. D. K. Hunter, M. C. Chia and I. Andonovic, �??Buffering in Optical Packet Switches,�?? IEEE Journal of Lightwave Technology 16(12) (1998) 2081-2094.
    [CrossRef]
  10. A. S. Tanenbaum, Computer Networks (Prentice Hall, 1996).
  11. V. Santonja, �??Dependability models of RAID using stochastic activity networks,�?? in Proceedings of Dependable Computing Conference, pp. 141-158, 1996.
  12. Fluid Studios, FSRaid documentation, <a href="http://www. fluidstudios.com/fsraid.html"> http://www. fluidstudios.com/fsraid.html</a> (accessed March 2004).
  13. The Smart Par Primer, <a href="http://usenethelp.code ccorner.com/SPar_Primer.html">http://usenethelp.code ccorner.com/SPar_Primer.html</a> (accessed March 2004).
  14. Leonard Kleinrock, Queuing Systems Volume I: Theory (John Wiley & Sons, 1975).
  15. Z. Rosberg, H. L. Vu, M. Zukerman and J. White, �??Performance Analyses of Optical Burst-Switching Networks,�?? IEEE Journal on Selected Areas in Communications 21(7) (2003) 1187-1197.
    [CrossRef]
  16. G. Birtwistle, DEMOS: Discrete Event Modelling on Simula (MacMillan, 1978).
  17. E. V. Breusegem, J. Cheyns, B. Lannoo, A. Ackaert, M. Pickavet and P. Demeester, �??Implications of using offsets in all-optical packet switched networks,�?? in Proceedings of IEEE Optical Network Design and Modelling (Institute of Electrical and Electronic Engineers, 2003).
  18. H. �?verby and N. Stol, �??Effects of bursty traffic in service differentiated Optical Packet Switched networks,�?? Optics Express 12(3) (2004) 410-415.
    [CrossRef] [PubMed]
  19. H. W. Braun, NLANR/Measurement and Network analysis <a href="http://www.caida.org/analysis/AIX/plen_hist/.">http://www.caida.org/analysis/AIX/plen_hist/</a>

IEEE Communications Magazine (1)

M. J. O�??Mahony, D. Simeonidou, D. K. Hunter and A. Tzanakaki, �??The Application of Optical Packet Switching in Future Communication Networks,�?? IEEE Communications Magazine 39(3) (2001) 128-135.
[CrossRef]

IEEE Journal of Lightwave Technology (2)

S. Yao, B. Mukherjee, S. J. Ben Yoo and S. Dixit, �??A Unified Study of Contention-Resolution Schemes in Optical Packet-Switched Networks,�?? IEEE Journal of Lightwave Technology 21(3) (2003) 672-683.
[CrossRef]

D. K. Hunter, M. C. Chia and I. Andonovic, �??Buffering in Optical Packet Switches,�?? IEEE Journal of Lightwave Technology 16(12) (1998) 2081-2094.
[CrossRef]

IEEE Journal on Selected Areas in Commu (2)

M. Yoo, C. Qiao and S. Dixit, �??QoS Performance of Optical Burst Switching in IP-Over-WDM Networks,�?? IEEE Journal on Selected Areas in Communications 18(10) (2000) 2062-2071.
[CrossRef]

Z. Rosberg, H. L. Vu, M. Zukerman and J. White, �??Performance Analyses of Optical Burst-Switching Networks,�?? IEEE Journal on Selected Areas in Communications 21(7) (2003) 1187-1197.
[CrossRef]

IEEE Journal on Selected Areas in Commun (1)

L. Dittmann et al., �??The European IST Project DAVID: A Viable Approach Toward Optical Packet Switching,�?? IEEE Journal on Selected Areas in Communications 21(7) (2003) 1026-1040.
[CrossRef]

IEEE Photonics Technology Letters (1)

S. L. Danielsen, C. Joergensen, B. Mikkelsen and K. E. Stubkjaer, �??Optical Packet Switched Network Layer Without Optical Buffers,�?? IEEE Photonics Technology Letters 10(6) (1998) 896-898.
[CrossRef]

Journal of High Speed Networks (1)

J. S. Turner, �??Terabit burst switching,�?? Journal of High Speed Networks 8(1) (1999) 3-16.

Optics Express (1)

H. �?verby and N. Stol, �??Effects of bursty traffic in service differentiated Optical Packet Switched networks,�?? Optics Express 12(3) (2004) 410-415.
[CrossRef] [PubMed]

Proc of IEEE (1)

E. V. Breusegem, J. Cheyns, B. Lannoo, A. Ackaert, M. Pickavet and P. Demeester, �??Implications of using offsets in all-optical packet switched networks,�?? in Proceedings of IEEE Optical Network Design and Modelling (Institute of Electrical and Electronic Engineers, 2003).

Proc of International Conference (1)

Y. Chen, H. Wu, D. Xu and C. Qiao, �??Performance Analysis of Optical Burst Switched Node with Deflection Routing,�?? in Proceedings of International Conference on Communication, pp. 1355-1359, 2003.

Proceedings of Dependable Computing Conf (1)

V. Santonja, �??Dependability models of RAID using stochastic activity networks,�?? in Proceedings of Dependable Computing Conference, pp. 141-158, 1996.

Other (7)

Fluid Studios, FSRaid documentation, <a href="http://www. fluidstudios.com/fsraid.html"> http://www. fluidstudios.com/fsraid.html</a> (accessed March 2004).

The Smart Par Primer, <a href="http://usenethelp.code ccorner.com/SPar_Primer.html">http://usenethelp.code ccorner.com/SPar_Primer.html</a> (accessed March 2004).

Leonard Kleinrock, Queuing Systems Volume I: Theory (John Wiley & Sons, 1975).

H. W. Braun, NLANR/Measurement and Network analysis <a href="http://www.caida.org/analysis/AIX/plen_hist/.">http://www.caida.org/analysis/AIX/plen_hist/</a>

G. Birtwistle, DEMOS: Discrete Event Modelling on Simula (MacMillan, 1978).

A. S. Tanenbaum, Computer Networks (Prentice Hall, 1996).

R. Ramaswami and K. N. Sivarajan, Optical Networks: A Practical Perspective (Morgan Kaufmann, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Illustration of the NLPRS. One redundancy packet is created from a set of four data packets at ingress router j. All five packets are transmitted to egress router k. One data packet is dropped in the network due to contention. However, the lost data packet is reconstructed at egress router k using the successful data- and redundancy packet arrivals.

Fig. 2.
Fig. 2.

The considered optical packet switch and its corresponding electronic edge router.

Fig. 3.
Fig. 3.

The cumulative packet length distribution before the NLPRS has been applied (a). The cumulative end-to-end delay distribution before the NLPRS has been applied. ρD=0.2, G=7, AM=Poisson, PLD=Deterministic (b).

Fig. 4.
Fig. 4.

The DPLR as a function of the product r/m for various values of the parameter m. ρD=0.2, G=7, AM=Poisson, PLD=Deterministic, RPSM=BTB.

Fig. 5.
Fig. 5.

The DPLR as a function of the parameter ρD for various values of the parameter r. m=10, G=7, AM=Poisson, PLD=Deterministic, RPSM=BTB.

Fig. 6.
Fig. 6.

The DPLR as a function of the product r/m for various values of the parameter G. ρD=0.2, m=10, AM=Poisson, PLD=Deterministic, RPSM=BTB.

Fig. 7.
Fig. 7.

The DPLR as a function of the product r/m for various values of the parameter c. ρD=0.2, m=10, G=7, PLD=Deterministic, RPSM=BTB.

Fig. 8.
Fig. 8.

The DPLR as a function of the product r/m for various values of the parameter m. ρD=0.2, G=7, AM=Poisson, PLD=Empirically, RPSM=BTB.

Fig. 9.
Fig. 9.

The mean packet length as a function of the product r/m for various values of the parameter m. ρD=0.2, G=7, AM=Poisson, PLD=Empirically, RPSM=BTB (a). The cumulative packet length distribution when ρD=0.2, m=10, r=20, G=7, AM=Poisson, PLD=Empirically, RPSM=BTB (b).

Fig. 10.
Fig. 10.

The DPLR as a function of the product r/m for various redundancy packet scheduling mechanisms. ρD=0.2, m=5, G=7, AM=Poisson, PLD=Deterministic.

Fig. 11.
Fig. 11.

The cumulative end-to-end delay (in μs) when ρD=0.2, m=500, r=500, G=7, AM=Poisson, PLD=Empirically, RPSM=BTB (a). The cumulative end-to-end delay when ρD=0.4, m=10, r=10, G=7, AM=Poisson, PLD=Empirically, RPSM=BTB (b).

Tables (2)

Tables Icon

Table 1. The number of lost DPAR in a packet set as a function of the number of lost DPs and RPs.

Tables Icon

Table 2. The parameters used in the performance evaluation. Unless stated differently, the initial values of these parameters are used in the rest of the section.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

B i = E N i , A i = ( ( N i A i ) N i N i ! ) ( j = 0 N i ( N i A i ) j j ! )
A i = 1 μ N i ( π k e i e k λ k p = 1 C ( 1 I ( e p , e i , π k ) E N p , A p ) )
B ( π k ) = 1 e k ( 1 B i )
A i , r , m = 1 μ N i ( π k e i e k λ k r + m m p = 1 C ( 1 I ( e p , e i , π k ) E N p , A p , r , m ) )
= r + m m 1 μ N i ( π k e i e k λ k p = 1 C ( 1 I ( e p , e i , π k ) E N p , A p , r , m ) ) = r + m m A i
B i , r , m = E N i , A i , r , m = ( ( N i A i , r , m ) N i N i ! ) ( j = 0 N i ( N i A i , r , m ) j j ! )
B ( π k , r , m ) = 1 e k ( 1 B i , r , m )
Q s = m s B ( π k , r , m ) s ( 1 B ( π k , r , m ) ) m s
R s = r s B ( π k , r , m ) s ( 1 B ( π k , r , m ) ) r s
T m ( π k , r , m ) = i = 1 m j = Max [ r i + 1,0 ] r i Q i R j
= i = 1 m j = Max [ r i + 1,0 ] r i m i B ( π k , r , m ) i ( 1 B ( π k , r , m ) ) m i
· r j B ( π k , r , m ) j ( 1 B ( π k , r , m ) ) r j
= i = 1 m j = Max [ r i + 1,0 ] r i m i ( 1 e k ( 1 B i , r , m ) ) i ( e k ( 1 B i , r , m ) ) m i
· r j ( 1 e k ( 1 B i , r , m ) ) j ( e k ( 1 B i , r , m ) ) r j
T ( π k , r , m ) = 1 m T m ( π k , r , m )
RPLR NET = 1 λ TOT π k λ k B ( π k )
DPLR NET = 1 λ TOT π k λ k T ( π k , r , m )
ρ D = G γ · av · hop · L 3 GNC = γ · av · hop 3
a = ( 1 + ( c 2 1 ) c 2 + 1 ) 2 , θ 0 = 2 , θ 1 = 2 λ ( 1 a )
c 2 = ( σ m 1 ) 2 = m 2 m 1 2 1 = ε 1 = 2 a + k 2 a · k 2 ( a + k a · k ) 2 1

Metrics