Abstract

We introduce a novel transmission technique of periodic in-line all-optical format conversion between return-to-zero and non-return-to-zero-like aimed at delaying the accumulation of format-specific impairments. A particular realization of this approach using in-line normal dispersion fibre-enhanced nonlinear optical loop mirrors at 40Gbit/s data rate is presented.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Forghieri, R. W. Tkach, and A. R. Chraplyvy, “Fiber nonlinearities and their impact on transmission systems,” in Optical Fiber Telecommunications IIIA, I. P. Kaminow and T. L. Koch, eds. (Academic, San Diego, Calif., 1997), pp. 196–264.
  2. L. F. Mollenauer, J. P. Gordon, and P. V. Mamyshev, “Solitons in high bit-rate, long-distance transmission,” in Optical Fiber Telecommunications IIIA, I. P. Kaminow and T. L. Koch, eds. (Academic, San Diego, Calif., 1997), pp. 373–460.
  3. E. Iannone, F. Matera, A. Mecozzi, and M. Settembre, Nonlinear Optical Communication Networks (John Wiley & Sons, 1998).
  4. R. J. Essiambre, G. Raybon, and B. Mikkelsen, “Pseudo-linear transmission of high-speed TDM signals: 40 and 160Gb/s,” in Optical Fiber Telecommunications IVB, I. P. Kaminow and T. Li, eds. (Academic, New Jersey, 2002), pp. 232–304.
  5. D. Breuer and K. Petermann, “Comparison of NRZ- and RZ- modulation format for 40Gbit/s TDM standard-fiber systems,” IEEE Photon. Technol. Lett. 9, 398–400 (1997).
    [Crossref]
  6. S. -G. Park, A. H. Gnauck, J. M. Wiesenfeld, and L. D. Garrett, “40-Gb/s transmission over multiple 120-km spans of conventional single-mode fiber using highly dispersed pulses,” IEEE Photon. Technol. Lett. 12, 1085–1087 (2000).
    [Crossref]
  7. P. V. Mamyshev and N. A. Mamysheva, “Pulse-overlapped dispersion-managed data transmission and intra-channel four-wave mixing,” Opt. Lett. 24, 1456–1458 (1999).
    [Crossref]
  8. A. Mecozzi, C. B. Clausen, and M. Shtaif, “Analysis of intrachannel nonlinear effects in highly dispersed optical pulse transmission,” IEEE Photon. Technol. Lett. 12, 392–394 (2000).
    [Crossref]
  9. K. S. Cheng and J. Conradi, “Reduction of pulse-to-pulse interaction using alternative RZ formats in 40-Gb/s system,” IEEE Photon. Technol. Lett. 14, 98–100 (2002).
    [Crossref]
  10. X. Liu, X. Wei, A. H. Gnauck, C. Xu, and I. K. Wickham, “Suppression of intrachannel four-wave-mixing-induced ghost pulses in high-speed transmission by phase inversion between adjacent marker blocks,” Opt. Lett. 27, 1177–1179 (2002).
    [Crossref]
  11. A. V. Kanaev, G. G. Luther, V. Kovanis, S. R. Bickham, and J. Conradi, “Ghost-pulse generation suppression in phase-modulated 40-Gb/s RZ transmission,” J. Lightwave Technol. 21, 1486–1489 (2003).
    [Crossref]
  12. S. Boscolo, S. K. Turitsyn, and K. J. Blow, “Study of the operating regime for all-optical passive 2R regeneration of dispersion-managed RZ data at 40Gbit/s using in-line NOLMs,” IEEE Photon. Technol. Lett. 14, 30–32 (2002).
    [Crossref]
  13. S. Boscolo, S. K. Turitsyn, and K. J. Blow, “All-optical passive quasi-regeneration in transoceanic 40Gbit/s return-to-zero transmission systems with strong dispersion management,” Opt. Commun. 205, 277–280 (2002).
    [Crossref]
  14. S. Bigo, O. Leclerc, and E. Desurvire, “All-optical fiber signal processing and regeneration for soliton communications,” IEEE J. Sel. Top. Quantum Electron. 3, 1208–1222 (1997).
    [Crossref]
  15. L. Xu, B. C. Wang, V. Baby, I. Glesk, and P. R. Prucnal, “All-optical data format conversion between RZ and NRZ based on a Mach-Zehnder interferometric wavelength converter,” IEEE Photon. Technol. Lett. 15, 308–310 (2003).
    [Crossref]
  16. H. Nakatsuka, D. Grischkowsky, and A. C. Balant, “Nonlinear picosecond-pulse propagating through optical fibers with positive group velocity dispersion,” Phys. Rev. Lett. 47, 910–913 (1981).
    [Crossref]
  17. M. Suzuki, H. Toda, A. H. Liang, and A. Asegawa, “Improvement of amplitude and phase margins in an RZ optical receiver using Kerr nonlinearity in normal dispersion fiber,” IEEE Photon. Technol. Lett. 13, 1248–1250 (2001).
    [Crossref]
  18. N. J. Smith and N. J. Doran, “Picosecond soliton transmission using concatenated nonlinear optical loop-mirror intensity filters,” J. Opt. Soc. Am. B 12, 1117–1125 (1995).
    [Crossref]
  19. S. Boscolo, J. H. B. Nijhof, and S. K. Turitsyn, “Autosoliton transmission in dispersion-managed systems guided by in-line nonlinear optical loop mirrors,” Opt. Lett. 25, 1240–1242 (2000).
    [Crossref]

2003 (2)

A. V. Kanaev, G. G. Luther, V. Kovanis, S. R. Bickham, and J. Conradi, “Ghost-pulse generation suppression in phase-modulated 40-Gb/s RZ transmission,” J. Lightwave Technol. 21, 1486–1489 (2003).
[Crossref]

L. Xu, B. C. Wang, V. Baby, I. Glesk, and P. R. Prucnal, “All-optical data format conversion between RZ and NRZ based on a Mach-Zehnder interferometric wavelength converter,” IEEE Photon. Technol. Lett. 15, 308–310 (2003).
[Crossref]

2002 (4)

K. S. Cheng and J. Conradi, “Reduction of pulse-to-pulse interaction using alternative RZ formats in 40-Gb/s system,” IEEE Photon. Technol. Lett. 14, 98–100 (2002).
[Crossref]

X. Liu, X. Wei, A. H. Gnauck, C. Xu, and I. K. Wickham, “Suppression of intrachannel four-wave-mixing-induced ghost pulses in high-speed transmission by phase inversion between adjacent marker blocks,” Opt. Lett. 27, 1177–1179 (2002).
[Crossref]

S. Boscolo, S. K. Turitsyn, and K. J. Blow, “Study of the operating regime for all-optical passive 2R regeneration of dispersion-managed RZ data at 40Gbit/s using in-line NOLMs,” IEEE Photon. Technol. Lett. 14, 30–32 (2002).
[Crossref]

S. Boscolo, S. K. Turitsyn, and K. J. Blow, “All-optical passive quasi-regeneration in transoceanic 40Gbit/s return-to-zero transmission systems with strong dispersion management,” Opt. Commun. 205, 277–280 (2002).
[Crossref]

2001 (1)

M. Suzuki, H. Toda, A. H. Liang, and A. Asegawa, “Improvement of amplitude and phase margins in an RZ optical receiver using Kerr nonlinearity in normal dispersion fiber,” IEEE Photon. Technol. Lett. 13, 1248–1250 (2001).
[Crossref]

2000 (3)

S. Boscolo, J. H. B. Nijhof, and S. K. Turitsyn, “Autosoliton transmission in dispersion-managed systems guided by in-line nonlinear optical loop mirrors,” Opt. Lett. 25, 1240–1242 (2000).
[Crossref]

S. -G. Park, A. H. Gnauck, J. M. Wiesenfeld, and L. D. Garrett, “40-Gb/s transmission over multiple 120-km spans of conventional single-mode fiber using highly dispersed pulses,” IEEE Photon. Technol. Lett. 12, 1085–1087 (2000).
[Crossref]

A. Mecozzi, C. B. Clausen, and M. Shtaif, “Analysis of intrachannel nonlinear effects in highly dispersed optical pulse transmission,” IEEE Photon. Technol. Lett. 12, 392–394 (2000).
[Crossref]

1999 (1)

P. V. Mamyshev and N. A. Mamysheva, “Pulse-overlapped dispersion-managed data transmission and intra-channel four-wave mixing,” Opt. Lett. 24, 1456–1458 (1999).
[Crossref]

1997 (2)

D. Breuer and K. Petermann, “Comparison of NRZ- and RZ- modulation format for 40Gbit/s TDM standard-fiber systems,” IEEE Photon. Technol. Lett. 9, 398–400 (1997).
[Crossref]

S. Bigo, O. Leclerc, and E. Desurvire, “All-optical fiber signal processing and regeneration for soliton communications,” IEEE J. Sel. Top. Quantum Electron. 3, 1208–1222 (1997).
[Crossref]

1995 (1)

1981 (1)

H. Nakatsuka, D. Grischkowsky, and A. C. Balant, “Nonlinear picosecond-pulse propagating through optical fibers with positive group velocity dispersion,” Phys. Rev. Lett. 47, 910–913 (1981).
[Crossref]

Asegawa, A.

M. Suzuki, H. Toda, A. H. Liang, and A. Asegawa, “Improvement of amplitude and phase margins in an RZ optical receiver using Kerr nonlinearity in normal dispersion fiber,” IEEE Photon. Technol. Lett. 13, 1248–1250 (2001).
[Crossref]

Baby, V.

L. Xu, B. C. Wang, V. Baby, I. Glesk, and P. R. Prucnal, “All-optical data format conversion between RZ and NRZ based on a Mach-Zehnder interferometric wavelength converter,” IEEE Photon. Technol. Lett. 15, 308–310 (2003).
[Crossref]

Balant, A. C.

H. Nakatsuka, D. Grischkowsky, and A. C. Balant, “Nonlinear picosecond-pulse propagating through optical fibers with positive group velocity dispersion,” Phys. Rev. Lett. 47, 910–913 (1981).
[Crossref]

Bickham, S. R.

Bigo, S.

S. Bigo, O. Leclerc, and E. Desurvire, “All-optical fiber signal processing and regeneration for soliton communications,” IEEE J. Sel. Top. Quantum Electron. 3, 1208–1222 (1997).
[Crossref]

Blow, K. J.

S. Boscolo, S. K. Turitsyn, and K. J. Blow, “Study of the operating regime for all-optical passive 2R regeneration of dispersion-managed RZ data at 40Gbit/s using in-line NOLMs,” IEEE Photon. Technol. Lett. 14, 30–32 (2002).
[Crossref]

S. Boscolo, S. K. Turitsyn, and K. J. Blow, “All-optical passive quasi-regeneration in transoceanic 40Gbit/s return-to-zero transmission systems with strong dispersion management,” Opt. Commun. 205, 277–280 (2002).
[Crossref]

Boscolo, S.

S. Boscolo, S. K. Turitsyn, and K. J. Blow, “All-optical passive quasi-regeneration in transoceanic 40Gbit/s return-to-zero transmission systems with strong dispersion management,” Opt. Commun. 205, 277–280 (2002).
[Crossref]

S. Boscolo, S. K. Turitsyn, and K. J. Blow, “Study of the operating regime for all-optical passive 2R regeneration of dispersion-managed RZ data at 40Gbit/s using in-line NOLMs,” IEEE Photon. Technol. Lett. 14, 30–32 (2002).
[Crossref]

S. Boscolo, J. H. B. Nijhof, and S. K. Turitsyn, “Autosoliton transmission in dispersion-managed systems guided by in-line nonlinear optical loop mirrors,” Opt. Lett. 25, 1240–1242 (2000).
[Crossref]

Breuer, D.

D. Breuer and K. Petermann, “Comparison of NRZ- and RZ- modulation format for 40Gbit/s TDM standard-fiber systems,” IEEE Photon. Technol. Lett. 9, 398–400 (1997).
[Crossref]

Cheng, K. S.

K. S. Cheng and J. Conradi, “Reduction of pulse-to-pulse interaction using alternative RZ formats in 40-Gb/s system,” IEEE Photon. Technol. Lett. 14, 98–100 (2002).
[Crossref]

Chraplyvy, A. R.

F. Forghieri, R. W. Tkach, and A. R. Chraplyvy, “Fiber nonlinearities and their impact on transmission systems,” in Optical Fiber Telecommunications IIIA, I. P. Kaminow and T. L. Koch, eds. (Academic, San Diego, Calif., 1997), pp. 196–264.

Clausen, C. B.

A. Mecozzi, C. B. Clausen, and M. Shtaif, “Analysis of intrachannel nonlinear effects in highly dispersed optical pulse transmission,” IEEE Photon. Technol. Lett. 12, 392–394 (2000).
[Crossref]

Conradi, J.

A. V. Kanaev, G. G. Luther, V. Kovanis, S. R. Bickham, and J. Conradi, “Ghost-pulse generation suppression in phase-modulated 40-Gb/s RZ transmission,” J. Lightwave Technol. 21, 1486–1489 (2003).
[Crossref]

K. S. Cheng and J. Conradi, “Reduction of pulse-to-pulse interaction using alternative RZ formats in 40-Gb/s system,” IEEE Photon. Technol. Lett. 14, 98–100 (2002).
[Crossref]

Desurvire, E.

S. Bigo, O. Leclerc, and E. Desurvire, “All-optical fiber signal processing and regeneration for soliton communications,” IEEE J. Sel. Top. Quantum Electron. 3, 1208–1222 (1997).
[Crossref]

Doran, N. J.

Essiambre, R. J.

R. J. Essiambre, G. Raybon, and B. Mikkelsen, “Pseudo-linear transmission of high-speed TDM signals: 40 and 160Gb/s,” in Optical Fiber Telecommunications IVB, I. P. Kaminow and T. Li, eds. (Academic, New Jersey, 2002), pp. 232–304.

Forghieri, F.

F. Forghieri, R. W. Tkach, and A. R. Chraplyvy, “Fiber nonlinearities and their impact on transmission systems,” in Optical Fiber Telecommunications IIIA, I. P. Kaminow and T. L. Koch, eds. (Academic, San Diego, Calif., 1997), pp. 196–264.

Garrett, L. D.

S. -G. Park, A. H. Gnauck, J. M. Wiesenfeld, and L. D. Garrett, “40-Gb/s transmission over multiple 120-km spans of conventional single-mode fiber using highly dispersed pulses,” IEEE Photon. Technol. Lett. 12, 1085–1087 (2000).
[Crossref]

Glesk, I.

L. Xu, B. C. Wang, V. Baby, I. Glesk, and P. R. Prucnal, “All-optical data format conversion between RZ and NRZ based on a Mach-Zehnder interferometric wavelength converter,” IEEE Photon. Technol. Lett. 15, 308–310 (2003).
[Crossref]

Gnauck, A. H.

X. Liu, X. Wei, A. H. Gnauck, C. Xu, and I. K. Wickham, “Suppression of intrachannel four-wave-mixing-induced ghost pulses in high-speed transmission by phase inversion between adjacent marker blocks,” Opt. Lett. 27, 1177–1179 (2002).
[Crossref]

S. -G. Park, A. H. Gnauck, J. M. Wiesenfeld, and L. D. Garrett, “40-Gb/s transmission over multiple 120-km spans of conventional single-mode fiber using highly dispersed pulses,” IEEE Photon. Technol. Lett. 12, 1085–1087 (2000).
[Crossref]

Gordon, J. P.

L. F. Mollenauer, J. P. Gordon, and P. V. Mamyshev, “Solitons in high bit-rate, long-distance transmission,” in Optical Fiber Telecommunications IIIA, I. P. Kaminow and T. L. Koch, eds. (Academic, San Diego, Calif., 1997), pp. 373–460.

Grischkowsky, D.

H. Nakatsuka, D. Grischkowsky, and A. C. Balant, “Nonlinear picosecond-pulse propagating through optical fibers with positive group velocity dispersion,” Phys. Rev. Lett. 47, 910–913 (1981).
[Crossref]

Iannone, E.

E. Iannone, F. Matera, A. Mecozzi, and M. Settembre, Nonlinear Optical Communication Networks (John Wiley & Sons, 1998).

Kanaev, A. V.

Kovanis, V.

Leclerc, O.

S. Bigo, O. Leclerc, and E. Desurvire, “All-optical fiber signal processing and regeneration for soliton communications,” IEEE J. Sel. Top. Quantum Electron. 3, 1208–1222 (1997).
[Crossref]

Liang, A. H.

M. Suzuki, H. Toda, A. H. Liang, and A. Asegawa, “Improvement of amplitude and phase margins in an RZ optical receiver using Kerr nonlinearity in normal dispersion fiber,” IEEE Photon. Technol. Lett. 13, 1248–1250 (2001).
[Crossref]

Liu, X.

Luther, G. G.

Mamyshev, P. V.

P. V. Mamyshev and N. A. Mamysheva, “Pulse-overlapped dispersion-managed data transmission and intra-channel four-wave mixing,” Opt. Lett. 24, 1456–1458 (1999).
[Crossref]

L. F. Mollenauer, J. P. Gordon, and P. V. Mamyshev, “Solitons in high bit-rate, long-distance transmission,” in Optical Fiber Telecommunications IIIA, I. P. Kaminow and T. L. Koch, eds. (Academic, San Diego, Calif., 1997), pp. 373–460.

Mamysheva, N. A.

P. V. Mamyshev and N. A. Mamysheva, “Pulse-overlapped dispersion-managed data transmission and intra-channel four-wave mixing,” Opt. Lett. 24, 1456–1458 (1999).
[Crossref]

Matera, F.

E. Iannone, F. Matera, A. Mecozzi, and M. Settembre, Nonlinear Optical Communication Networks (John Wiley & Sons, 1998).

Mecozzi, A.

A. Mecozzi, C. B. Clausen, and M. Shtaif, “Analysis of intrachannel nonlinear effects in highly dispersed optical pulse transmission,” IEEE Photon. Technol. Lett. 12, 392–394 (2000).
[Crossref]

E. Iannone, F. Matera, A. Mecozzi, and M. Settembre, Nonlinear Optical Communication Networks (John Wiley & Sons, 1998).

Mikkelsen, B.

R. J. Essiambre, G. Raybon, and B. Mikkelsen, “Pseudo-linear transmission of high-speed TDM signals: 40 and 160Gb/s,” in Optical Fiber Telecommunications IVB, I. P. Kaminow and T. Li, eds. (Academic, New Jersey, 2002), pp. 232–304.

Mollenauer, L. F.

L. F. Mollenauer, J. P. Gordon, and P. V. Mamyshev, “Solitons in high bit-rate, long-distance transmission,” in Optical Fiber Telecommunications IIIA, I. P. Kaminow and T. L. Koch, eds. (Academic, San Diego, Calif., 1997), pp. 373–460.

Nakatsuka, H.

H. Nakatsuka, D. Grischkowsky, and A. C. Balant, “Nonlinear picosecond-pulse propagating through optical fibers with positive group velocity dispersion,” Phys. Rev. Lett. 47, 910–913 (1981).
[Crossref]

Nijhof, J. H. B.

Park, S. -G.

S. -G. Park, A. H. Gnauck, J. M. Wiesenfeld, and L. D. Garrett, “40-Gb/s transmission over multiple 120-km spans of conventional single-mode fiber using highly dispersed pulses,” IEEE Photon. Technol. Lett. 12, 1085–1087 (2000).
[Crossref]

Petermann, K.

D. Breuer and K. Petermann, “Comparison of NRZ- and RZ- modulation format for 40Gbit/s TDM standard-fiber systems,” IEEE Photon. Technol. Lett. 9, 398–400 (1997).
[Crossref]

Prucnal, P. R.

L. Xu, B. C. Wang, V. Baby, I. Glesk, and P. R. Prucnal, “All-optical data format conversion between RZ and NRZ based on a Mach-Zehnder interferometric wavelength converter,” IEEE Photon. Technol. Lett. 15, 308–310 (2003).
[Crossref]

Raybon, G.

R. J. Essiambre, G. Raybon, and B. Mikkelsen, “Pseudo-linear transmission of high-speed TDM signals: 40 and 160Gb/s,” in Optical Fiber Telecommunications IVB, I. P. Kaminow and T. Li, eds. (Academic, New Jersey, 2002), pp. 232–304.

Settembre, M.

E. Iannone, F. Matera, A. Mecozzi, and M. Settembre, Nonlinear Optical Communication Networks (John Wiley & Sons, 1998).

Shtaif, M.

A. Mecozzi, C. B. Clausen, and M. Shtaif, “Analysis of intrachannel nonlinear effects in highly dispersed optical pulse transmission,” IEEE Photon. Technol. Lett. 12, 392–394 (2000).
[Crossref]

Smith, N. J.

Suzuki, M.

M. Suzuki, H. Toda, A. H. Liang, and A. Asegawa, “Improvement of amplitude and phase margins in an RZ optical receiver using Kerr nonlinearity in normal dispersion fiber,” IEEE Photon. Technol. Lett. 13, 1248–1250 (2001).
[Crossref]

Tkach, R. W.

F. Forghieri, R. W. Tkach, and A. R. Chraplyvy, “Fiber nonlinearities and their impact on transmission systems,” in Optical Fiber Telecommunications IIIA, I. P. Kaminow and T. L. Koch, eds. (Academic, San Diego, Calif., 1997), pp. 196–264.

Toda, H.

M. Suzuki, H. Toda, A. H. Liang, and A. Asegawa, “Improvement of amplitude and phase margins in an RZ optical receiver using Kerr nonlinearity in normal dispersion fiber,” IEEE Photon. Technol. Lett. 13, 1248–1250 (2001).
[Crossref]

Turitsyn, S. K.

S. Boscolo, S. K. Turitsyn, and K. J. Blow, “All-optical passive quasi-regeneration in transoceanic 40Gbit/s return-to-zero transmission systems with strong dispersion management,” Opt. Commun. 205, 277–280 (2002).
[Crossref]

S. Boscolo, S. K. Turitsyn, and K. J. Blow, “Study of the operating regime for all-optical passive 2R regeneration of dispersion-managed RZ data at 40Gbit/s using in-line NOLMs,” IEEE Photon. Technol. Lett. 14, 30–32 (2002).
[Crossref]

S. Boscolo, J. H. B. Nijhof, and S. K. Turitsyn, “Autosoliton transmission in dispersion-managed systems guided by in-line nonlinear optical loop mirrors,” Opt. Lett. 25, 1240–1242 (2000).
[Crossref]

Wang, B. C.

L. Xu, B. C. Wang, V. Baby, I. Glesk, and P. R. Prucnal, “All-optical data format conversion between RZ and NRZ based on a Mach-Zehnder interferometric wavelength converter,” IEEE Photon. Technol. Lett. 15, 308–310 (2003).
[Crossref]

Wei, X.

Wickham, I. K.

Wiesenfeld, J. M.

S. -G. Park, A. H. Gnauck, J. M. Wiesenfeld, and L. D. Garrett, “40-Gb/s transmission over multiple 120-km spans of conventional single-mode fiber using highly dispersed pulses,” IEEE Photon. Technol. Lett. 12, 1085–1087 (2000).
[Crossref]

Xu, C.

Xu, L.

L. Xu, B. C. Wang, V. Baby, I. Glesk, and P. R. Prucnal, “All-optical data format conversion between RZ and NRZ based on a Mach-Zehnder interferometric wavelength converter,” IEEE Photon. Technol. Lett. 15, 308–310 (2003).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Bigo, O. Leclerc, and E. Desurvire, “All-optical fiber signal processing and regeneration for soliton communications,” IEEE J. Sel. Top. Quantum Electron. 3, 1208–1222 (1997).
[Crossref]

IEEE Photon. Technol. Lett. (7)

L. Xu, B. C. Wang, V. Baby, I. Glesk, and P. R. Prucnal, “All-optical data format conversion between RZ and NRZ based on a Mach-Zehnder interferometric wavelength converter,” IEEE Photon. Technol. Lett. 15, 308–310 (2003).
[Crossref]

S. Boscolo, S. K. Turitsyn, and K. J. Blow, “Study of the operating regime for all-optical passive 2R regeneration of dispersion-managed RZ data at 40Gbit/s using in-line NOLMs,” IEEE Photon. Technol. Lett. 14, 30–32 (2002).
[Crossref]

M. Suzuki, H. Toda, A. H. Liang, and A. Asegawa, “Improvement of amplitude and phase margins in an RZ optical receiver using Kerr nonlinearity in normal dispersion fiber,” IEEE Photon. Technol. Lett. 13, 1248–1250 (2001).
[Crossref]

D. Breuer and K. Petermann, “Comparison of NRZ- and RZ- modulation format for 40Gbit/s TDM standard-fiber systems,” IEEE Photon. Technol. Lett. 9, 398–400 (1997).
[Crossref]

S. -G. Park, A. H. Gnauck, J. M. Wiesenfeld, and L. D. Garrett, “40-Gb/s transmission over multiple 120-km spans of conventional single-mode fiber using highly dispersed pulses,” IEEE Photon. Technol. Lett. 12, 1085–1087 (2000).
[Crossref]

A. Mecozzi, C. B. Clausen, and M. Shtaif, “Analysis of intrachannel nonlinear effects in highly dispersed optical pulse transmission,” IEEE Photon. Technol. Lett. 12, 392–394 (2000).
[Crossref]

K. S. Cheng and J. Conradi, “Reduction of pulse-to-pulse interaction using alternative RZ formats in 40-Gb/s system,” IEEE Photon. Technol. Lett. 14, 98–100 (2002).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

S. Boscolo, S. K. Turitsyn, and K. J. Blow, “All-optical passive quasi-regeneration in transoceanic 40Gbit/s return-to-zero transmission systems with strong dispersion management,” Opt. Commun. 205, 277–280 (2002).
[Crossref]

Opt. Lett. (3)

Phys. Rev. Lett. (1)

H. Nakatsuka, D. Grischkowsky, and A. C. Balant, “Nonlinear picosecond-pulse propagating through optical fibers with positive group velocity dispersion,” Phys. Rev. Lett. 47, 910–913 (1981).
[Crossref]

Other (4)

F. Forghieri, R. W. Tkach, and A. R. Chraplyvy, “Fiber nonlinearities and their impact on transmission systems,” in Optical Fiber Telecommunications IIIA, I. P. Kaminow and T. L. Koch, eds. (Academic, San Diego, Calif., 1997), pp. 196–264.

L. F. Mollenauer, J. P. Gordon, and P. V. Mamyshev, “Solitons in high bit-rate, long-distance transmission,” in Optical Fiber Telecommunications IIIA, I. P. Kaminow and T. L. Koch, eds. (Academic, San Diego, Calif., 1997), pp. 373–460.

E. Iannone, F. Matera, A. Mecozzi, and M. Settembre, Nonlinear Optical Communication Networks (John Wiley & Sons, 1998).

R. J. Essiambre, G. Raybon, and B. Mikkelsen, “Pseudo-linear transmission of high-speed TDM signals: 40 and 160Gb/s,” in Optical Fiber Telecommunications IVB, I. P. Kaminow and T. Li, eds. (Academic, New Jersey, 2002), pp. 232–304.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic diagram of one element of the periodic transmission system.

Fig. 2.
Fig. 2.

Pulse shapes at the input and ouptut of the NDF-NOLM pulse processor.

Fig. 3.
Fig. 3.

Evolution of the stationary pulse width (left, upper curve), chirp (left, lower curve), and bandwidth (right) over one period of the system.

Fig. 4.
Fig. 4.

Eye-diagrams in the NDF-NOLM signal processor.

Fig. 5.
Fig. 5.

Q-factor at the NDF-NOLM signal processor output versus the span average dispersion of the second cell of the system period.

Metrics