Abstract

A new near-field optical storage system utilizing a left-handed material (LHM) is introduced by attaching an LHM slab to the lower surface of a conventional solid immersion lens (SIL). The performance of the present storage system is compared with a conventional SIL system through numerical simulation. The LHM slab in the present storage system can image very well the focused spot at the lower surface of the SIL to the surface of a disc. It allows a large air-gap for the mechanical convenience while keeping a large signal contrast and a high storage density. The tolerance of the air-gap is also improved.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. S. M. Mansfield, W. R. Studenmund, G. S. Kino and K. Osato, �??High numerical-aperture lens system for optical data storage,�?? Opt. Lett. 18, 305-307 (1993).
    [CrossRef] [PubMed]
  2. T. D. Milster, K. Shimura, J. S. Jo and K. Hirota, �??Pupil-plane filtering for improved signal detection in an optical data-storage system incorporating a solid immersion lens,�?? Opt. Lett. 24, 605-607 (1999).
    [CrossRef]
  3. K. Hirota, T. D. Milster, K. Shimura, Y. Zhang and J. S. Jo, �??Near-field phase change recording using a GaP hemispherical lens,�?? Jpn. J. Appl. Phys. 39, 968-972 (2000).
    [CrossRef]
  4. C. Liu and S. H. Park, �??Numerical analysis of an annular-aperture solid immersion lens,�?? Opt. Lett. 29, 1742-1744 (2004).
    [CrossRef] [PubMed]
  5. V. G. Veselago, �??The electrodynamics of substances with simultaneously negative values of ε and µ,�?? Sov. Phys. Usp. 10, 509-514 (1968).
    [CrossRef]
  6. J. B. Pendry, �??Negative Refraction Makes a Perfect Lens,�?? Phys. Rev. Lett. 85, 3966-3969 (2000).
    [CrossRef] [PubMed]
  7. N. Garcia and M. N. Vesperinas, �??Left-Handed Materials Do Not Make a Perfect Lens,�?? Phys. Rev. Lett. 88, 207403 (2002).
    [CrossRef] [PubMed]
  8. L. Shen and S. He, �??Studies of the imaging characteristics for a slab of a lossy left-handed material,�?? Phys. Lett. A 309, 298-305 (2003).
    [CrossRef]
  9. L. Chen, S. He and L. Shen, �??Finite-Size Effects of a Left-Handed Material Slab on the Image Quality,�?? Phys. Rev. Lett. 92, 107404 (2004).
    [CrossRef] [PubMed]
  10. D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna and J. B. Pendry, �??Limitations on subdiffraction imaging with a negative refractive index slab,�?? Appl. Phys. Lett. 82, 1506-1508 (2001).
    [CrossRef]
  11. S. T. Chui and L. Hu, �??Theoretical investigation on the possibility of preparing left-handed materials in metallic magnetic granular composites,�?? Phys. Rev. B, 65, 144407 (2002).
    [CrossRef]
  12. J. Q. Shen, Z. C. Ruan and S. He, �??How to realize a negative refraction index material at an atomic level in the optical frequency range?�?? Journal of Zhejiang University SCIENCE 5, No. 11, 1-4 (2004).
    [CrossRef] [PubMed]
  13. S. Imanishi, T. Ishimoto, Y. Aki, T. Kando, K. Kishima, K. Yamamoto and M. Yamamoto, �??Near-field optical head for disc mastering process,�?? Jpn. J. Appl. Phys. 39, 800-805 (2000).
    [CrossRef]
  14. L. Liu, Z. Shi and S. He, �??Analysis of the polarization-dependent diffraction from a metallic grating by use of a three-dimensional combined vectorial method,�?? J. Opt. Soc. Am. A 21, 1545-1552 (2004).
    [CrossRef]
  15. M. Mansuripur, �??Certain computational aspects of vector diffraction problems,�?? J. Opt. Soc. Am. A 6, 786-805 (1989).
    [CrossRef]
  16. A. Taflove, Advances in Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, Mass., 1998).
  17. R. W. Ziolkowski, �??Pulsed and CW Gaussian beam interactions with double negative metamaterial slabs,�?? Opt. Express 11, 662-681 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-7-662">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-7-662</a>
    [CrossRef] [PubMed]
  18. T. D. Milster, �??Near-field optical data storage: avenues for improved performance,�?? Opt. Eng. 40, 2255-2260 (2001).
    [CrossRef]
  19. C. Y. Luo, S. G. Johnson, and J. D. Joannopoulos, �??Subwavelength imaging in photonic crystals,�?? Phys. Rev. B 68, 045115, (2003).
    [CrossRef]

Appl. Phys. Lett.

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna and J. B. Pendry, �??Limitations on subdiffraction imaging with a negative refractive index slab,�?? Appl. Phys. Lett. 82, 1506-1508 (2001).
[CrossRef]

J. Opt. Soc. Am. A

Journal of Zhejiang University SCIENCE

J. Q. Shen, Z. C. Ruan and S. He, �??How to realize a negative refraction index material at an atomic level in the optical frequency range?�?? Journal of Zhejiang University SCIENCE 5, No. 11, 1-4 (2004).
[CrossRef] [PubMed]

Jpn. J. Appl. Phys.

S. Imanishi, T. Ishimoto, Y. Aki, T. Kando, K. Kishima, K. Yamamoto and M. Yamamoto, �??Near-field optical head for disc mastering process,�?? Jpn. J. Appl. Phys. 39, 800-805 (2000).
[CrossRef]

K. Hirota, T. D. Milster, K. Shimura, Y. Zhang and J. S. Jo, �??Near-field phase change recording using a GaP hemispherical lens,�?? Jpn. J. Appl. Phys. 39, 968-972 (2000).
[CrossRef]

Opt. Eng.

T. D. Milster, �??Near-field optical data storage: avenues for improved performance,�?? Opt. Eng. 40, 2255-2260 (2001).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Lett. A

L. Shen and S. He, �??Studies of the imaging characteristics for a slab of a lossy left-handed material,�?? Phys. Lett. A 309, 298-305 (2003).
[CrossRef]

Phys. Rev. B

C. Y. Luo, S. G. Johnson, and J. D. Joannopoulos, �??Subwavelength imaging in photonic crystals,�?? Phys. Rev. B 68, 045115, (2003).
[CrossRef]

S. T. Chui and L. Hu, �??Theoretical investigation on the possibility of preparing left-handed materials in metallic magnetic granular composites,�?? Phys. Rev. B, 65, 144407 (2002).
[CrossRef]

Phys. Rev. Lett.

L. Chen, S. He and L. Shen, �??Finite-Size Effects of a Left-Handed Material Slab on the Image Quality,�?? Phys. Rev. Lett. 92, 107404 (2004).
[CrossRef] [PubMed]

J. B. Pendry, �??Negative Refraction Makes a Perfect Lens,�?? Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

N. Garcia and M. N. Vesperinas, �??Left-Handed Materials Do Not Make a Perfect Lens,�?? Phys. Rev. Lett. 88, 207403 (2002).
[CrossRef] [PubMed]

Sov. Phys. Usp.

V. G. Veselago, �??The electrodynamics of substances with simultaneously negative values of ε and µ,�?? Sov. Phys. Usp. 10, 509-514 (1968).
[CrossRef]

Other

A. Taflove, Advances in Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, Mass., 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic diagram of the near-field optical storage system using an SIL.

Fig. 2.
Fig. 2.

The disc structure and the total-field/scattered-field regions in the FDTD algorithm. The numbers following each material indicate the thickness and the refractive index of the corresponding layer. Subscripts x and a correspond to the crystalline and amorphous states of GeSbTe, respectively.

Fig. 3.
Fig. 3.

Amplitude distributions of Ex (in the absence of disc) (a) in a conventional SIL system; (b) in the present L-SIL system; (c) at the focal plane of the image and the lower surface of the SIL. The dashed lines in (a) and (b) indicate the interfaces of different media. The solid line in (b) indicates the focal plane of the image.

Fig. 4.
Fig. 4.

The detected signals I x and I a, and the signal contrast V as the air-gap increases in (a) the conventional SIL system and (b) the present L-SIL system (with h L=h a). The spatial frequency f s=0.

Fig. 5.
Fig. 5.

Dependence of the normalized signal contrast on the spatial frequency f s for different values of air-gap h a in (a) the conventional SIL system and (b) the present L-SIL system (with h L=h a).

Fig. 6.
Fig. 6.

The tolerance of the air-gap h a around the designed value in the conventional SIL system and the present L-SIL system.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ε ̂ L ( ω ) = 1 ω pe 2 ω 2 + j γ e ω , μ ̂ L ( ω ) = 1 ω pm 2 ω 2 + j γ m ω ,

Metrics