Abstract

The resonant cavity enhanced (RCE) photodetectors is analyzed using the finite difference time domain (FDTD) method. Unlike the analytical models, FDTD includes all of the essential considerations such as the cavity build-up time, standing wave effect and the refractive index profiles across every layer. The fully numerical implementation allows it to be used as a verification of the analytical models. The simulation is demonstrated in terms of time and space enabling one to visualize how the field inside the cavity builds up. The results are compared with the analytical models to point out the subtle differences and assumptions made in the analytical models.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Kishino, M. S. Ûnlü, J. I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, “Resonant cavity-enhanced (RCE) photodetectors,” IEEE J. Quantum Electronics,  27, 2025–2034 (1991).
    [CrossRef]
  2. F. Y. Huang, A. Salvador, X. Gui, N. Teraguchi, and H. Morkoc, “Resonant-cavity GaAs/InGaAs/AlAs photodiodes with a periodic absorber structure,” Appl. Phys. Lett. 63, 141–143 (1993).
    [CrossRef]
  3. A. Srinivasan, S. Murtaza, J. C. Campbell, and B. G. Streetman, “High quantum efficiency dual wavelength resonant-cavity photodetector,” Appl. Phys. Lett. 66, 535–537 (1995).
    [CrossRef]
  4. B. Temelkuran, E. Ozbay, J. P. Kavanaugh, G. Tuttle, and K. M. Ho, “Resonant cavity enhanced detectors embedded in photonic crystals,” Appl. Phys. Lett. 72, 2376–2378 (1998).
    [CrossRef]
  5. Y. H. Zhang, H. T. Luo, and W. Z. Shen, “Study on the quantum efficiency of resonant cavity enhanced GaAs far-infrared detectors,” J. Appl. Phys. 91, 5538–5544 (2002).
    [CrossRef]
  6. C. Li, Q. Yang, H. Wang, J. Yu, Q. Wang, Y. Li, J. Zhou, H. Huang, and X. Ren, “Back-incident SiGe-Si multiple quantum-well resonant-cavity-enhanced photodetectors for 1.3-μm operation,” IEEE Photonics Tech. J. 12, 1373–1375 (2000).
    [CrossRef]
  7. S. C. Hagness and R. M. Joseph, “Subpicosecond electrodynamics of distributed Bragg reflector microlasers: Results from finite difference time domain simulations,” Radio Science,  31, 931–941 (1996).
    [CrossRef]
  8. D. K. Cheng, Field and Wave Electromagnetics (Addison-Wesley, Menlo Park, 1992).
  9. M. S. Ûnlü, G. Ulu, and M. GÖkkavas, “Resonant cavity enhanced photodetectors,” in Photodetectors and Fiber Optics, H. S. Nalwa, ed. (Academic Press, San Diego, Calif., 2001), pp. 97–201.
  10. M. GÖkkavas, B. M. Onat, E. Özbay, E. P. Ata, J. Xu, E. Towe, and M. S. Ûnlü, “Design and optimization of high-speed resonant cavity enhanced Schottky photodiodes,” IEEE J. Quantum Electronics,  35, 208–215 (1999).
    [CrossRef]
  11. M. S. Ûnlü and S. Strite, “Resont cavity enhanced photonic devices,” J. Appl. Phys. 78, 607–639 (1995).
    [CrossRef]
  12. M. Born and E. Wolf, Principles of Optics (Pergamon Press, Oxford, U. K., 1980).

2002 (1)

Y. H. Zhang, H. T. Luo, and W. Z. Shen, “Study on the quantum efficiency of resonant cavity enhanced GaAs far-infrared detectors,” J. Appl. Phys. 91, 5538–5544 (2002).
[CrossRef]

2000 (1)

C. Li, Q. Yang, H. Wang, J. Yu, Q. Wang, Y. Li, J. Zhou, H. Huang, and X. Ren, “Back-incident SiGe-Si multiple quantum-well resonant-cavity-enhanced photodetectors for 1.3-μm operation,” IEEE Photonics Tech. J. 12, 1373–1375 (2000).
[CrossRef]

1999 (1)

M. GÖkkavas, B. M. Onat, E. Özbay, E. P. Ata, J. Xu, E. Towe, and M. S. Ûnlü, “Design and optimization of high-speed resonant cavity enhanced Schottky photodiodes,” IEEE J. Quantum Electronics,  35, 208–215 (1999).
[CrossRef]

1998 (1)

B. Temelkuran, E. Ozbay, J. P. Kavanaugh, G. Tuttle, and K. M. Ho, “Resonant cavity enhanced detectors embedded in photonic crystals,” Appl. Phys. Lett. 72, 2376–2378 (1998).
[CrossRef]

1996 (1)

S. C. Hagness and R. M. Joseph, “Subpicosecond electrodynamics of distributed Bragg reflector microlasers: Results from finite difference time domain simulations,” Radio Science,  31, 931–941 (1996).
[CrossRef]

1995 (2)

M. S. Ûnlü and S. Strite, “Resont cavity enhanced photonic devices,” J. Appl. Phys. 78, 607–639 (1995).
[CrossRef]

A. Srinivasan, S. Murtaza, J. C. Campbell, and B. G. Streetman, “High quantum efficiency dual wavelength resonant-cavity photodetector,” Appl. Phys. Lett. 66, 535–537 (1995).
[CrossRef]

1993 (1)

F. Y. Huang, A. Salvador, X. Gui, N. Teraguchi, and H. Morkoc, “Resonant-cavity GaAs/InGaAs/AlAs photodiodes with a periodic absorber structure,” Appl. Phys. Lett. 63, 141–143 (1993).
[CrossRef]

1991 (1)

K. Kishino, M. S. Ûnlü, J. I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, “Resonant cavity-enhanced (RCE) photodetectors,” IEEE J. Quantum Electronics,  27, 2025–2034 (1991).
[CrossRef]

Arsenault, L.

K. Kishino, M. S. Ûnlü, J. I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, “Resonant cavity-enhanced (RCE) photodetectors,” IEEE J. Quantum Electronics,  27, 2025–2034 (1991).
[CrossRef]

Ata, E. P.

M. GÖkkavas, B. M. Onat, E. Özbay, E. P. Ata, J. Xu, E. Towe, and M. S. Ûnlü, “Design and optimization of high-speed resonant cavity enhanced Schottky photodiodes,” IEEE J. Quantum Electronics,  35, 208–215 (1999).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics (Pergamon Press, Oxford, U. K., 1980).

Campbell, J. C.

A. Srinivasan, S. Murtaza, J. C. Campbell, and B. G. Streetman, “High quantum efficiency dual wavelength resonant-cavity photodetector,” Appl. Phys. Lett. 66, 535–537 (1995).
[CrossRef]

Cheng, D. K.

D. K. Cheng, Field and Wave Electromagnetics (Addison-Wesley, Menlo Park, 1992).

Chyi, J. I.

K. Kishino, M. S. Ûnlü, J. I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, “Resonant cavity-enhanced (RCE) photodetectors,” IEEE J. Quantum Electronics,  27, 2025–2034 (1991).
[CrossRef]

GÖkkavas, M.

M. GÖkkavas, B. M. Onat, E. Özbay, E. P. Ata, J. Xu, E. Towe, and M. S. Ûnlü, “Design and optimization of high-speed resonant cavity enhanced Schottky photodiodes,” IEEE J. Quantum Electronics,  35, 208–215 (1999).
[CrossRef]

M. S. Ûnlü, G. Ulu, and M. GÖkkavas, “Resonant cavity enhanced photodetectors,” in Photodetectors and Fiber Optics, H. S. Nalwa, ed. (Academic Press, San Diego, Calif., 2001), pp. 97–201.

Gui, X.

F. Y. Huang, A. Salvador, X. Gui, N. Teraguchi, and H. Morkoc, “Resonant-cavity GaAs/InGaAs/AlAs photodiodes with a periodic absorber structure,” Appl. Phys. Lett. 63, 141–143 (1993).
[CrossRef]

Hagness, S. C.

S. C. Hagness and R. M. Joseph, “Subpicosecond electrodynamics of distributed Bragg reflector microlasers: Results from finite difference time domain simulations,” Radio Science,  31, 931–941 (1996).
[CrossRef]

Ho, K. M.

B. Temelkuran, E. Ozbay, J. P. Kavanaugh, G. Tuttle, and K. M. Ho, “Resonant cavity enhanced detectors embedded in photonic crystals,” Appl. Phys. Lett. 72, 2376–2378 (1998).
[CrossRef]

Huang, F. Y.

F. Y. Huang, A. Salvador, X. Gui, N. Teraguchi, and H. Morkoc, “Resonant-cavity GaAs/InGaAs/AlAs photodiodes with a periodic absorber structure,” Appl. Phys. Lett. 63, 141–143 (1993).
[CrossRef]

Huang, H.

C. Li, Q. Yang, H. Wang, J. Yu, Q. Wang, Y. Li, J. Zhou, H. Huang, and X. Ren, “Back-incident SiGe-Si multiple quantum-well resonant-cavity-enhanced photodetectors for 1.3-μm operation,” IEEE Photonics Tech. J. 12, 1373–1375 (2000).
[CrossRef]

Joseph, R. M.

S. C. Hagness and R. M. Joseph, “Subpicosecond electrodynamics of distributed Bragg reflector microlasers: Results from finite difference time domain simulations,” Radio Science,  31, 931–941 (1996).
[CrossRef]

Kavanaugh, J. P.

B. Temelkuran, E. Ozbay, J. P. Kavanaugh, G. Tuttle, and K. M. Ho, “Resonant cavity enhanced detectors embedded in photonic crystals,” Appl. Phys. Lett. 72, 2376–2378 (1998).
[CrossRef]

Kishino, K.

K. Kishino, M. S. Ûnlü, J. I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, “Resonant cavity-enhanced (RCE) photodetectors,” IEEE J. Quantum Electronics,  27, 2025–2034 (1991).
[CrossRef]

Li, C.

C. Li, Q. Yang, H. Wang, J. Yu, Q. Wang, Y. Li, J. Zhou, H. Huang, and X. Ren, “Back-incident SiGe-Si multiple quantum-well resonant-cavity-enhanced photodetectors for 1.3-μm operation,” IEEE Photonics Tech. J. 12, 1373–1375 (2000).
[CrossRef]

Li, Y.

C. Li, Q. Yang, H. Wang, J. Yu, Q. Wang, Y. Li, J. Zhou, H. Huang, and X. Ren, “Back-incident SiGe-Si multiple quantum-well resonant-cavity-enhanced photodetectors for 1.3-μm operation,” IEEE Photonics Tech. J. 12, 1373–1375 (2000).
[CrossRef]

Luo, H. T.

Y. H. Zhang, H. T. Luo, and W. Z. Shen, “Study on the quantum efficiency of resonant cavity enhanced GaAs far-infrared detectors,” J. Appl. Phys. 91, 5538–5544 (2002).
[CrossRef]

Morkoc, H.

F. Y. Huang, A. Salvador, X. Gui, N. Teraguchi, and H. Morkoc, “Resonant-cavity GaAs/InGaAs/AlAs photodiodes with a periodic absorber structure,” Appl. Phys. Lett. 63, 141–143 (1993).
[CrossRef]

K. Kishino, M. S. Ûnlü, J. I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, “Resonant cavity-enhanced (RCE) photodetectors,” IEEE J. Quantum Electronics,  27, 2025–2034 (1991).
[CrossRef]

Murtaza, S.

A. Srinivasan, S. Murtaza, J. C. Campbell, and B. G. Streetman, “High quantum efficiency dual wavelength resonant-cavity photodetector,” Appl. Phys. Lett. 66, 535–537 (1995).
[CrossRef]

Onat, B. M.

M. GÖkkavas, B. M. Onat, E. Özbay, E. P. Ata, J. Xu, E. Towe, and M. S. Ûnlü, “Design and optimization of high-speed resonant cavity enhanced Schottky photodiodes,” IEEE J. Quantum Electronics,  35, 208–215 (1999).
[CrossRef]

Ozbay, E.

B. Temelkuran, E. Ozbay, J. P. Kavanaugh, G. Tuttle, and K. M. Ho, “Resonant cavity enhanced detectors embedded in photonic crystals,” Appl. Phys. Lett. 72, 2376–2378 (1998).
[CrossRef]

Özbay, E.

M. GÖkkavas, B. M. Onat, E. Özbay, E. P. Ata, J. Xu, E. Towe, and M. S. Ûnlü, “Design and optimization of high-speed resonant cavity enhanced Schottky photodiodes,” IEEE J. Quantum Electronics,  35, 208–215 (1999).
[CrossRef]

Reed, J.

K. Kishino, M. S. Ûnlü, J. I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, “Resonant cavity-enhanced (RCE) photodetectors,” IEEE J. Quantum Electronics,  27, 2025–2034 (1991).
[CrossRef]

Ren, X.

C. Li, Q. Yang, H. Wang, J. Yu, Q. Wang, Y. Li, J. Zhou, H. Huang, and X. Ren, “Back-incident SiGe-Si multiple quantum-well resonant-cavity-enhanced photodetectors for 1.3-μm operation,” IEEE Photonics Tech. J. 12, 1373–1375 (2000).
[CrossRef]

Salvador, A.

F. Y. Huang, A. Salvador, X. Gui, N. Teraguchi, and H. Morkoc, “Resonant-cavity GaAs/InGaAs/AlAs photodiodes with a periodic absorber structure,” Appl. Phys. Lett. 63, 141–143 (1993).
[CrossRef]

Shen, W. Z.

Y. H. Zhang, H. T. Luo, and W. Z. Shen, “Study on the quantum efficiency of resonant cavity enhanced GaAs far-infrared detectors,” J. Appl. Phys. 91, 5538–5544 (2002).
[CrossRef]

Srinivasan, A.

A. Srinivasan, S. Murtaza, J. C. Campbell, and B. G. Streetman, “High quantum efficiency dual wavelength resonant-cavity photodetector,” Appl. Phys. Lett. 66, 535–537 (1995).
[CrossRef]

Streetman, B. G.

A. Srinivasan, S. Murtaza, J. C. Campbell, and B. G. Streetman, “High quantum efficiency dual wavelength resonant-cavity photodetector,” Appl. Phys. Lett. 66, 535–537 (1995).
[CrossRef]

Strite, S.

M. S. Ûnlü and S. Strite, “Resont cavity enhanced photonic devices,” J. Appl. Phys. 78, 607–639 (1995).
[CrossRef]

Temelkuran, B.

B. Temelkuran, E. Ozbay, J. P. Kavanaugh, G. Tuttle, and K. M. Ho, “Resonant cavity enhanced detectors embedded in photonic crystals,” Appl. Phys. Lett. 72, 2376–2378 (1998).
[CrossRef]

Teraguchi, N.

F. Y. Huang, A. Salvador, X. Gui, N. Teraguchi, and H. Morkoc, “Resonant-cavity GaAs/InGaAs/AlAs photodiodes with a periodic absorber structure,” Appl. Phys. Lett. 63, 141–143 (1993).
[CrossRef]

Towe, E.

M. GÖkkavas, B. M. Onat, E. Özbay, E. P. Ata, J. Xu, E. Towe, and M. S. Ûnlü, “Design and optimization of high-speed resonant cavity enhanced Schottky photodiodes,” IEEE J. Quantum Electronics,  35, 208–215 (1999).
[CrossRef]

Tuttle, G.

B. Temelkuran, E. Ozbay, J. P. Kavanaugh, G. Tuttle, and K. M. Ho, “Resonant cavity enhanced detectors embedded in photonic crystals,” Appl. Phys. Lett. 72, 2376–2378 (1998).
[CrossRef]

Ulu, G.

M. S. Ûnlü, G. Ulu, and M. GÖkkavas, “Resonant cavity enhanced photodetectors,” in Photodetectors and Fiber Optics, H. S. Nalwa, ed. (Academic Press, San Diego, Calif., 2001), pp. 97–201.

Ûnlü, M. S.

M. GÖkkavas, B. M. Onat, E. Özbay, E. P. Ata, J. Xu, E. Towe, and M. S. Ûnlü, “Design and optimization of high-speed resonant cavity enhanced Schottky photodiodes,” IEEE J. Quantum Electronics,  35, 208–215 (1999).
[CrossRef]

M. S. Ûnlü and S. Strite, “Resont cavity enhanced photonic devices,” J. Appl. Phys. 78, 607–639 (1995).
[CrossRef]

K. Kishino, M. S. Ûnlü, J. I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, “Resonant cavity-enhanced (RCE) photodetectors,” IEEE J. Quantum Electronics,  27, 2025–2034 (1991).
[CrossRef]

M. S. Ûnlü, G. Ulu, and M. GÖkkavas, “Resonant cavity enhanced photodetectors,” in Photodetectors and Fiber Optics, H. S. Nalwa, ed. (Academic Press, San Diego, Calif., 2001), pp. 97–201.

Wang, H.

C. Li, Q. Yang, H. Wang, J. Yu, Q. Wang, Y. Li, J. Zhou, H. Huang, and X. Ren, “Back-incident SiGe-Si multiple quantum-well resonant-cavity-enhanced photodetectors for 1.3-μm operation,” IEEE Photonics Tech. J. 12, 1373–1375 (2000).
[CrossRef]

Wang, Q.

C. Li, Q. Yang, H. Wang, J. Yu, Q. Wang, Y. Li, J. Zhou, H. Huang, and X. Ren, “Back-incident SiGe-Si multiple quantum-well resonant-cavity-enhanced photodetectors for 1.3-μm operation,” IEEE Photonics Tech. J. 12, 1373–1375 (2000).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Pergamon Press, Oxford, U. K., 1980).

Xu, J.

M. GÖkkavas, B. M. Onat, E. Özbay, E. P. Ata, J. Xu, E. Towe, and M. S. Ûnlü, “Design and optimization of high-speed resonant cavity enhanced Schottky photodiodes,” IEEE J. Quantum Electronics,  35, 208–215 (1999).
[CrossRef]

Yang, Q.

C. Li, Q. Yang, H. Wang, J. Yu, Q. Wang, Y. Li, J. Zhou, H. Huang, and X. Ren, “Back-incident SiGe-Si multiple quantum-well resonant-cavity-enhanced photodetectors for 1.3-μm operation,” IEEE Photonics Tech. J. 12, 1373–1375 (2000).
[CrossRef]

Yu, J.

C. Li, Q. Yang, H. Wang, J. Yu, Q. Wang, Y. Li, J. Zhou, H. Huang, and X. Ren, “Back-incident SiGe-Si multiple quantum-well resonant-cavity-enhanced photodetectors for 1.3-μm operation,” IEEE Photonics Tech. J. 12, 1373–1375 (2000).
[CrossRef]

Zhang, Y. H.

Y. H. Zhang, H. T. Luo, and W. Z. Shen, “Study on the quantum efficiency of resonant cavity enhanced GaAs far-infrared detectors,” J. Appl. Phys. 91, 5538–5544 (2002).
[CrossRef]

Zhou, J.

C. Li, Q. Yang, H. Wang, J. Yu, Q. Wang, Y. Li, J. Zhou, H. Huang, and X. Ren, “Back-incident SiGe-Si multiple quantum-well resonant-cavity-enhanced photodetectors for 1.3-μm operation,” IEEE Photonics Tech. J. 12, 1373–1375 (2000).
[CrossRef]

Appl. Phys. Lett. (3)

F. Y. Huang, A. Salvador, X. Gui, N. Teraguchi, and H. Morkoc, “Resonant-cavity GaAs/InGaAs/AlAs photodiodes with a periodic absorber structure,” Appl. Phys. Lett. 63, 141–143 (1993).
[CrossRef]

A. Srinivasan, S. Murtaza, J. C. Campbell, and B. G. Streetman, “High quantum efficiency dual wavelength resonant-cavity photodetector,” Appl. Phys. Lett. 66, 535–537 (1995).
[CrossRef]

B. Temelkuran, E. Ozbay, J. P. Kavanaugh, G. Tuttle, and K. M. Ho, “Resonant cavity enhanced detectors embedded in photonic crystals,” Appl. Phys. Lett. 72, 2376–2378 (1998).
[CrossRef]

IEEE J. Quantum Electronics (2)

M. GÖkkavas, B. M. Onat, E. Özbay, E. P. Ata, J. Xu, E. Towe, and M. S. Ûnlü, “Design and optimization of high-speed resonant cavity enhanced Schottky photodiodes,” IEEE J. Quantum Electronics,  35, 208–215 (1999).
[CrossRef]

K. Kishino, M. S. Ûnlü, J. I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, “Resonant cavity-enhanced (RCE) photodetectors,” IEEE J. Quantum Electronics,  27, 2025–2034 (1991).
[CrossRef]

IEEE Photonics Tech. J. (1)

C. Li, Q. Yang, H. Wang, J. Yu, Q. Wang, Y. Li, J. Zhou, H. Huang, and X. Ren, “Back-incident SiGe-Si multiple quantum-well resonant-cavity-enhanced photodetectors for 1.3-μm operation,” IEEE Photonics Tech. J. 12, 1373–1375 (2000).
[CrossRef]

J. Appl. Phys. (2)

Y. H. Zhang, H. T. Luo, and W. Z. Shen, “Study on the quantum efficiency of resonant cavity enhanced GaAs far-infrared detectors,” J. Appl. Phys. 91, 5538–5544 (2002).
[CrossRef]

M. S. Ûnlü and S. Strite, “Resont cavity enhanced photonic devices,” J. Appl. Phys. 78, 607–639 (1995).
[CrossRef]

Radio Science (1)

S. C. Hagness and R. M. Joseph, “Subpicosecond electrodynamics of distributed Bragg reflector microlasers: Results from finite difference time domain simulations,” Radio Science,  31, 931–941 (1996).
[CrossRef]

Other (3)

D. K. Cheng, Field and Wave Electromagnetics (Addison-Wesley, Menlo Park, 1992).

M. S. Ûnlü, G. Ulu, and M. GÖkkavas, “Resonant cavity enhanced photodetectors,” in Photodetectors and Fiber Optics, H. S. Nalwa, ed. (Academic Press, San Diego, Calif., 2001), pp. 97–201.

M. Born and E. Wolf, Principles of Optics (Pergamon Press, Oxford, U. K., 1980).

Supplementary Material (1)

» Media 1: MPG (2484 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of the RCE photodetector

Fig. 2.
Fig. 2.

Optical field distribution in a RCE photodetector. (a) with no absorption, (b) with absorption. (Video file in case (b) showing the optical field distribution as a function of position (μm) and time. 2.42 MB)

Fig. 3.
Fig. 3.

The energy distribution inside the cavity as a function of time with absorption. The steady-state condition is reached at 540 fs.

Fig. 4.
Fig. 4.

Calculated η as a function of the normalized absorption coefficient. Dashed line shows η, derived by analytical model, and circle and solid line representη, using FDTD and TMM, respectively.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

E ( z ) = E m e i k 0 ( n m + n m ) z + E m e i k 0 ( n m + n m ) z
ε r ε 0 E t = × H J
H t = 1 μ 0 × E .
E x n + 1 / 2 ( i ) = [ 1 σΔ t 2 ε r ε 0 1 + σΔ t 2 ε r ε 0 ] E x n 1 / 2 ( i ) [ Δ t ε r ε 0 Δz 1 + σΔ t 2 ε r ε 0 ] [ H y n ( i + 1 / 2 ) H y n ( i 1 / 2 ) ]
H n + 1 ( i + 1 / 2 ) = H y n ( i + 1 / 2 ) Δ t μ 0 Δz [ E x n + 1 / 2 ( i + 1 ) E x n + 1 / 2 ( i ) ] .
α = ω c 0 ε r 2 [ 1 + ( σ ω ε 0 ε r ) 2 1 ] 1 / 2 ( N p / m ) .
η = 1 .
τ p = τ RT Loss .
P l = ( P f e α ex L 1 + P b e α ex L 2 ) ( 1 e αd ) .
η = [ ( 1 + R 2 e αd ) ( 1 R 1 R 2 e αd ) 2 ] ( 1 R 1 ) ( 1 e αd ) .

Metrics