Abstract

In spectroscopic optical coherence tomography, it is important and useful to separately estimate the absorption and the scattering properties of tissue. In this paper, we propose a least-squares fitting algorithm to separate absorption and scattering profiles when near-infrared absorbing dyes are used. The algorithm utilizes the broadband Ti:sapphire laser spectrum together with joint time-frequency analysis. Noise contribution to the final estimation was analyzed using simulation. The validity of our algorithm was demonstrated using both single-layer and multi-layer tissue phantoms.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  2. J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. E. Bouma, M. R. Hee, J. F. Southern and E. A. Swanson, "Biomedical imaging and optical biopsy using optical coherence tomography," Nature Medicine 1, 970-972 (1995).
    [CrossRef] [PubMed]
  3. A. F. Fercher, W. Drexler, C. K. Hitzenberger and T. Lasser, "Optical coherence tomography - principles and applications," Rep. Prog. Phys, 66, 239-303 (2003).
    [CrossRef]
  4. U. Morgner, W. Drexler, F. C. Kartner, X. D. Li, C. Pitris, E. P. Ippen and J. G. Fujimoto, "Spectroscopic optical coherence tomography," Opt. Lett. 25, 111-113 (2000).
    [CrossRef]
  5. R. Leitgeb, M. Wojtkowski, A. Kowalczyk, C. K. Hitzenberger, M. Sticker and A. F. Fercher, "Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography," Opt. Lett. 25, 820-822 (2000).
    [CrossRef]
  6. D. J. Faber, E. G. Mik, M. C. G. Aalders and T. G. van Leeuwen, "Light absorption of (oxy-) hemoglobin assessed by spectroscopic optical coherence tomography," Opt. Lett. 28, 1436-1438 (2003).
    [CrossRef] [PubMed]
  7. C. Xu, J. Ye, D. L. Marks and S. A. Boppart, "Near-infrared dyes as contrast-enhancing agents for spectroscopic optical coherence tomography," Opt. Lett. 29, 1647 (2004).
    [CrossRef] [PubMed]
  8. B. Hermann, K. Bizheva, A. Unterhuber, B. Povazay, H. Sattmann, L. Schmetterer, A. F. Fercher and W. Drexler, "Precision of extracting absorption profiles from weakly scattering media with spectroscopic time-domain optical coherence tomography," Opt. Express 12, 1677-1688 (2004).
    [CrossRef] [PubMed]
  9. K. D. Rao, M. A. Choma, S. Yazdanfar, A. M. Rollins and J. A. Izatt, "Molecular contrast in optical coherence tomography by use of a pump-probe technique," Opt. Lett. 28, 340-342 (2003).
    [CrossRef] [PubMed]
  10. C. Yang, M. A. Choma, L. E. Lamb, J. D. Simon and J. A. Izatt, "Protein-based molecular contrast optical coherence tomography with phytochrome as the contrast agent," Opt. Lett. 29, 1396-1398 (2004).
    [CrossRef] [PubMed]
  11. M. Born and E. Wolf, Principles of optics (Cambridge University Press, Cambridge, 1999).
  12. C. Yang, M. A. Choma, J. D. Simon and J. A. Izatt. "Spectral triangulations molecular contrast OCT with indocyanine green as contrast agent." Optical Society of American Biomedical Optics Topical Meetings, Miami, FL, April 14-17, 2004, Paper SB3.
  13. C. Xu and S. A. Boppart. "Comparative performance analysis of time-frequency distributions for spectroscopic optical coherence tomography." Optical Society of American Biomedical Optics Topical Meetings, Miami, FL, April 14-17, 2004, Paper FH9.
  14. J. M. Schmitt, S. H. Xiang and K. M. Yung, "Differential absorption imaging with optical coherence tomography," J. Opt. Soc. Am. A 15, 2288-2296 (1998).
    [CrossRef]
  15. D. L. Marks, A. L. Oldenburg, J. J. Reynolds and S. A. Boppart, "Digital algorithms for dispersion correction in optical coherence tomography for homogeneous and stratified media," Appl. Opt. 42, 204-217 (2003).
    [CrossRef] [PubMed]

Appl. Opt. (1)

J. Opt. Soc. Am. A (1)

Nature Medicine (1)

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. E. Bouma, M. R. Hee, J. F. Southern and E. A. Swanson, "Biomedical imaging and optical biopsy using optical coherence tomography," Nature Medicine 1, 970-972 (1995).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (6)

OSA Biomedical Optics Topical Mtgs 2004 (2)

C. Yang, M. A. Choma, J. D. Simon and J. A. Izatt. "Spectral triangulations molecular contrast OCT with indocyanine green as contrast agent." Optical Society of American Biomedical Optics Topical Meetings, Miami, FL, April 14-17, 2004, Paper SB3.

C. Xu and S. A. Boppart. "Comparative performance analysis of time-frequency distributions for spectroscopic optical coherence tomography." Optical Society of American Biomedical Optics Topical Meetings, Miami, FL, April 14-17, 2004, Paper FH9.

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger and T. Lasser, "Optical coherence tomography - principles and applications," Rep. Prog. Phys, 66, 239-303 (2003).
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Other (1)

M. Born and E. Wolf, Principles of optics (Cambridge University Press, Cambridge, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Errors in retrieved absorption fa as a function of SNR in SOCT I(λ, z).

Fig. 2.
Fig. 2.

Emission spectrum of the Ti:Al2O3 laser (black curve) and absorption spectrum of dye ADS830WS (red curve). Also shown is the FWHM region used for determining W(λ).

Fig. 3.
Fig. 3.

Absorption/scattering attenuation loss due to various absorbers/scatterers as measured by a spectrometer: 40 μM ADS830WS NIR dye solution, 1% 160 nm silica microbead solution, 0.5% 330 nm silica microbead solution, and 0.5 % 800 nm silica microbead solution, potato slice, and murine skin.

Fig. 4.
Fig. 4.

Separation of absorption and scattering losses from distinctive interfaces: total attenuation profile measured by SOCT (black curve), resolved absorption profile by the separation algorithm (green curve), resolved scattering profile by the separation algorithm (red curve), the sum of the resolved absorption profile and the resolved scattering profile (blue curve).

Fig. 5.
Fig. 5.

Resolved absorber and scatterer concentrations in turbid media. (a) Resolved cumulative dye concentrations from solutions with different dye concentrations but the same microbead concentration. (b) Resolved cumulative microbead concentrations from solutions with different microbead concentrations but the same dye concentration. The smooth lines represent the least-squares-fitted model of Eq. (10). The resolved concentrations retrieved from the slopes of the fitted lines are shown as well. The insets show the diagrams of the samples.

Fig. 6.
Fig. 6.

Resolved absorber and scatter concentrations in a turbid multi-layer phantom. (a) Resolved cumulative dye concentration. (b) Resolved cumulative microbead concentration. The lines represent the least-squares-fitted model of Eq. (10). The resolved concentrations retrieved from the slopes of the fitted lines are also shown. The inset in (a) shows the diagram of the samples.

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

I ( λ , z ) = S ( λ ) H r ( λ , z ) H m ( λ , z ) H s ( λ , z ) .
H m ( λ , z ) = exp { 2 0 z [ μ a ( λ , z ) + μ s ( λ , z ) ] dz } .
H r ( λ , z ) = H r ( λ ) H r ( z ) ,
H s ( λ , z ) = H s ( λ ) H s ( z ) .
I ( λ , z ) = S ( λ ) H s ( λ ) H r ( λ ) R ( z ) exp [ 2 0 z [ μ a ( λ , z ) + μ s ( λ , z ) ] dz ] ,
I ( λ , z = 0 ) = S ( λ ) H r ( λ ) H s ( λ ) R ( z = 0 ) .
I ( λ , z ) I ( λ , z ) I ( λ , z = 0 ) = R ( z ) exp { 2 0 z [ μ a ( λ , z ) + μ s ( λ , z ) ] dz } .
μ a ( λ , z ) = ε a ( λ ) f a ( z ) ,
μ s ( λ , z ) = ε s ( λ ) f s ( z ) ,
2 0 z [ μ a ( λ , z ) + μ s ( λ , z ) ] dz = 2 [ ε a ( λ ) 0 z f a ( z ) dz + ε s ( λ ) 0 z f s ( z ) dz ] .
Y ( λ , z ) log [ I ( λ , z ) ]
= log R ( z ) 2 [ ε a ( λ ) 0 z f a ( z ) dz + ε s ( λ ) 0 z f s ( z ) dz ]
= ε a ( λ ) F a ( z ) ε s ( λ ) F s ( z ) + C ( z ) .
F a ( z ) 2 0 z f a ( z ) dz , F s ( z ) 2 0 z f s ( z ) dz , C ( z ) log R ( z ) .
E ( z ) = λ 1 λ 2 [ F a ( z ) ε a ( λ ) F s ( z ) ε s ( λ ) + C ( z ) Y ( λ , z ) ] 2 W ( λ ) d λ ,
[ λ 1 λ 2 ε a 2 ( λ ) W ( λ ) d λ λ 1 λ 2 ε s ( λ ) ε a ( λ ) W ( λ ) d λ λ 1 λ 2 ε a ( λ ) W ( λ ) d λ λ 1 λ 2 ε a ( λ ) ε s W ( λ ) d λ λ 1 λ 2 ε s 2 ( λ ) W ( λ ) d λ λ 1 λ 2 ε s ( λ ) W ( λ ) d λ λ 1 λ 2 ε a ( λ ) W ( λ ) d λ λ 1 λ 2 ε s ( λ ) W ( λ ) d λ λ 1 λ 2 W ( λ ) d λ ] A [ F a ( z ) F s ( z ) C ( z ) ] X = [ λ 1 λ 2 Y ( λ , z ) ε a ( λ ) W ( λ ) d λ λ 1 λ 2 Y ( λ , z ) ε s ( λ ) W ( λ ) d λ λ 1 λ 2 Y ( λ , z ) W ( λ ) d λ ] Y .
[ λ 1 λ 2 ε a 2 W ( λ ) d λ λ 1 λ 2 λ ε s ( λ ) W ( λ ) d λ λ 1 λ 2 ε a ( λ ) W ( λ ) d λ λ 1 λ 2 λ ε a ( λ ) W ( λ ) d λ λ 1 λ 2 λ 2 W ( λ ) d λ λ 1 λ 2 λ W ( λ ) d λ λ 1 λ 2 ε a ( λ ) W ( λ ) d λ λ 1 λ 2 λ W ( λ ) d λ λ 1 λ 2 W ( λ ) d λ ] [ F a ( z ) a F s ( z ) D ( z ) ] = [ λ 1 λ 2 Y ( λ , z ) ε a ( λ ) W ( λ ) d λ λ 1 λ 2 λ Y ( λ , z ) W ( λ ) d λ λ 1 λ 2 Y ( λ , z ) W ( λ ) d λ ] ,
AX = Y ,
X α = arg min { Y AX 2 + α 2 LX 2 } .
X = ( A T A + α 2 L T L ) 1 A T Y .
X = A 1 Y .
σ x i 2 = j = 1 3 b ij 2 σ y j 2 ,
F = λ LD [ F LD ( F high F low ) + F low ] λ ( F high F low ) + F low
δ λ = λ c 2 2 l STFT ,

Metrics