Abstract

Simple apertures such as slits and meshes inserted in the beam path of a powerful Ti:Sapphire laser pulse are suitable to produce stable 1-D and 2-D arrays of filaments in liquids. The thus imposed intensity gradients and diffraction patterns can overcome the inherent beam irregularities which naturally give rise to random small-scale multiple filamentations. This method is visualized by means of two photon fluorescence imaging.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. S. L. Chin, A. Brodeur, S. Petit, O. G. Kosareva, and V. P. Kandidov, �??Filamentation and Supercontinuum Generation during the Propagation of Powerful Ultrashort Laser Pulses in Optical Media (White Light Laser),�?? J. Nonlinear Opt. Phys. Mat. 8, 121-146 (1999).
    [CrossRef]
  2. V.P. Kandidov, O. G. Kosareva, I. S. Golubtsov, W. Liu, A. Becker, N. Akozbek, C. M. Bowden, and S. L. Chin, �??Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation),�?? Appl Phys B 77, 149-165 (2003).
    [CrossRef]
  3. J. Kasparian, M. Rodriguez, G. Mejean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y-B. Andre, A. Mysyrowicz, R. Sauerbrey, J. �??P. Wolf, and L. Wöste, �??White-light filaments for atmospheric analysis,�?? Science 301, 61-64 (2003).
    [CrossRef] [PubMed]
  4. P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C.Wedekind, H. Wille, L.Wöste, and C. Ziener, �??Remote sensing of the atmosphere using ultrashort laser pulses,�?? Appl. Phys. B 71, 573-580 (2000).
    [CrossRef]
  5. Q. Luo, W. Liu, and S. L. Chin, �??Lasing action in air induced by ultra-fast laser filamentation,�?? Appl. Phys. B 76, 337-340 (2003).
    [CrossRef]
  6. H. Schroeder and S. L. Chin, �??Visualization of the evolution of multiple filaments in methanol,�?? Opt. Commun. 234, 399-406 (2004).
    [CrossRef]
  7. S. A. Hosseini, Q. Luo, B. Ferland, W. Liu, S. L. Chin, O. G. Kosareva, N. A. Panov, N. Akozbek, and V. P. Kandidov, Competition of multiple filaments during the propagation of intense femtosecond laser pulses,�?? Phys. Rev. A (to be published).
  8. W. Liu, S. A Hosseini, Q. Luo, B. Ferland, S. L. Chin, O. G. Kosareva, N. A. Panov, and V. P. Kandidov, �??Experimental observation and simulations of the self-action of white light laser pulse propagating in air,�?? New Journal of Physics V. 6, P. 6 (2004).
    [CrossRef]
  9. G. Mechain, A. Couairon, Y. �??B. Andre, C. D. Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbery, �??Long-range self-channeling of infrared laser pulses in air: a new propation regime without ionization,�?? Appl. Phys. B 79, 379-382 (2004).
    [CrossRef]
  10. S. Minardi, S. Sapone, W. Chinaglia, P. Di Trapani, and A. Berzanskis, �??Pixellike parametric generator based on controlled spatial-soliton formation,�?? Opt. Lett. 25, 326-328 (2000).
    [CrossRef]
  11. A. Dubietis, G. Tamosauskas, G. Fibich, and B. Ilan, �??Multiple filamentation induced by input-beam ellipticity,�?? Opt. Lett. 29, 1126-1128 (2004).
    [CrossRef] [PubMed]
  12. G. Méchain, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, �??Organizing Multiple Femtosecond Filaments in Air,�?? Phys. Rev. Lett. 93, 035003-1, 1-4 (2004).
    [CrossRef] [PubMed]
  13. V. P. Kandidov, M. Scalora, O. G. Kosareva, A. V. Nyakk, Q. Luo, S. A. Hosseini, S. L. Chin, �??Towards a control of multiple filamentation by spatial regulation of a high-power femtosecond laser pulse,�?? Appl. Phys. B submitted, 2004.
  14. H. Schroeder, invited talk �??2-D regular supercontinuum sources from a mesh,�?? presented at the 2nd International Symposium of Ultrafast Intense Laser Science, Quebec City, Canada, Sept. 25-29, 2003.
  15. W. Koechner, Solid-State Laser Engineering (Springer-Verlag Heidelberg New York, 1988).
  16. V. A. Soifer, Methods for Computer Design of Diffractive Optical Elements (John Wiley & Sons, Inc., New York, 2002).
  17. S. Minardi, A. Varanavicus, A. Piskarskas, and P. Di Trapani, �??A compact multi-pixel parametric light source,�?? Opt. Commun. 224, 301-307 (2003).
    [CrossRef]

Appl Phys B (1)

V.P. Kandidov, O. G. Kosareva, I. S. Golubtsov, W. Liu, A. Becker, N. Akozbek, C. M. Bowden, and S. L. Chin, �??Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation),�?? Appl Phys B 77, 149-165 (2003).
[CrossRef]

Appl. Phys. B (4)

P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C.Wedekind, H. Wille, L.Wöste, and C. Ziener, �??Remote sensing of the atmosphere using ultrashort laser pulses,�?? Appl. Phys. B 71, 573-580 (2000).
[CrossRef]

Q. Luo, W. Liu, and S. L. Chin, �??Lasing action in air induced by ultra-fast laser filamentation,�?? Appl. Phys. B 76, 337-340 (2003).
[CrossRef]

G. Mechain, A. Couairon, Y. �??B. Andre, C. D. Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbery, �??Long-range self-channeling of infrared laser pulses in air: a new propation regime without ionization,�?? Appl. Phys. B 79, 379-382 (2004).
[CrossRef]

V. P. Kandidov, M. Scalora, O. G. Kosareva, A. V. Nyakk, Q. Luo, S. A. Hosseini, S. L. Chin, �??Towards a control of multiple filamentation by spatial regulation of a high-power femtosecond laser pulse,�?? Appl. Phys. B submitted, 2004.

J. Nonlinear Opt. Phys. Mat. (1)

S. L. Chin, A. Brodeur, S. Petit, O. G. Kosareva, and V. P. Kandidov, �??Filamentation and Supercontinuum Generation during the Propagation of Powerful Ultrashort Laser Pulses in Optical Media (White Light Laser),�?? J. Nonlinear Opt. Phys. Mat. 8, 121-146 (1999).
[CrossRef]

New Journal of Physics V. (1)

W. Liu, S. A Hosseini, Q. Luo, B. Ferland, S. L. Chin, O. G. Kosareva, N. A. Panov, and V. P. Kandidov, �??Experimental observation and simulations of the self-action of white light laser pulse propagating in air,�?? New Journal of Physics V. 6, P. 6 (2004).
[CrossRef]

Opt. Commun. (2)

H. Schroeder and S. L. Chin, �??Visualization of the evolution of multiple filaments in methanol,�?? Opt. Commun. 234, 399-406 (2004).
[CrossRef]

S. Minardi, A. Varanavicus, A. Piskarskas, and P. Di Trapani, �??A compact multi-pixel parametric light source,�?? Opt. Commun. 224, 301-307 (2003).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. A (1)

S. A. Hosseini, Q. Luo, B. Ferland, W. Liu, S. L. Chin, O. G. Kosareva, N. A. Panov, N. Akozbek, and V. P. Kandidov, Competition of multiple filaments during the propagation of intense femtosecond laser pulses,�?? Phys. Rev. A (to be published).

Phys. Rev. Lett. (1)

G. Méchain, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, �??Organizing Multiple Femtosecond Filaments in Air,�?? Phys. Rev. Lett. 93, 035003-1, 1-4 (2004).
[CrossRef] [PubMed]

Science (1)

J. Kasparian, M. Rodriguez, G. Mejean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y-B. Andre, A. Mysyrowicz, R. Sauerbrey, J. �??P. Wolf, and L. Wöste, �??White-light filaments for atmospheric analysis,�?? Science 301, 61-64 (2003).
[CrossRef] [PubMed]

Other (3)

H. Schroeder, invited talk �??2-D regular supercontinuum sources from a mesh,�?? presented at the 2nd International Symposium of Ultrafast Intense Laser Science, Quebec City, Canada, Sept. 25-29, 2003.

W. Koechner, Solid-State Laser Engineering (Springer-Verlag Heidelberg New York, 1988).

V. A. Soifer, Methods for Computer Design of Diffractive Optical Elements (John Wiley & Sons, Inc., New York, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Two photon fluorescence imaging illustrates small-scale multiple filamentation in water from nearly discernible ripples in the entrance beam (left image). The hot spots in the exit beam (right image) and the enlarged section of the side view demonstrate the appearance of randomly distributed filaments. The individual diameters refer to 1/e levels.

Fig. 2.
Fig. 2.

Creation of a space-fixed 1-D array of filaments by launching the beam through a 200μm wide slit built from razorblades with small mechanical imperfections. The available input intensity was somewhat reduced to avoid white light production along the propagation length. The image shows a side view of developing filaments and the corresponding spot structure of the exit beam.

Fig. 3.
Fig. 3.

Creation of space-controlled 2-D arrays of filaments by launching the beam through a wire mesh (11×11 meshes, mesh 497μm, wire diameter 54μm). (a) Characteristic diffraction patterns for various distances. The shown image sections (1mm×1mm) contain the center mesh and half of its neighbors. (b) Corresponding white light patterns when the dye cell from Fig. 3(a) is replaced by a 10mm water cell.

Fig. 4.
Fig. 4.

Creation of space controlled 1-D arrays of filaments by launching the beam through a slit mesh (11 meshes, the same as in Fig. 3). (a) Side view of filamentation and generation of white light (bright zone on the right) and the corresponding exit image for a mesh to cell distance of 27 mm. (b) Characteristic white light patterns from a 7-mesh slit for various mesh positions. The slit size is given in the right panel for direct comparison.

Metrics