Abstract

In this paper, we demonstrate clock recovery from a patterned optical-time-division-multiplexed (OTDM) return-to-zero (RZ) data stream. A cascaded LiNbO3 Mach-Zehnder modulator is employed as an efficient optical-electrical mixer. A phase-locked-loop (PLL) is used to lock the cross-correlation component between the optical signal and a local oscillating signal. As a result, clock signal at 10GHz is extracted from the 160Gb/s optical TDM signal. The measured root-mean-square (RMS) timing jitter of the 10GHz clock signal is ~ 130fs.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. D. Cotter, J. K. Lucek, �??High-speed digital optical processing in future networks,�?? Philosophical Trans. Roy. Soc. A 358, 2283-2296 (2000).
    [CrossRef]
  2. L. E. Adams, E. S. Kintzer and J. G. Fujimoto, �??All-optical timing extraction at 40GHz using a mode-locked figure-eight laser with an SLA,�?? Electron. Lett. 31, 1759-1977 (1995).
    [CrossRef]
  3. P. E. Barnsley, G. E. Wickens, H. J. Wickes, D.M. Spirit, �??A 4�?5 Gb/s transmission system with all-optical clock recovery,�?? IEEE Photon. Technol. Lett. 4, 83-86 (1992).
    [CrossRef]
  4. M. Jinno and T. Matsumoto, �??All-optical timing extraction using 1.5µm self pulsating multielectrode DFB LD,�?? Electron. Lett. 30, 1426-1427 (1994).
  5. O. Kamatani and S. Kawanishi, �??Ultrahigh-speed clock recovery with phase lock loop based on four-wave mixing in a traveling-wave laser diode amplifier,�?? J. Lightwave Technol. 14, 1757-1767 (1996).
    [CrossRef]
  6. C. Boerner, C. Schubert, E. Hilliger, V. Marembert, J.Berger, S.Ferber, E.Dietrich, R.Ludwig, B.Schmauss, and H.G.Weber, �??160Gbit/s clock recovery with electro-optical PLL using bidirectionally operated electroabsorption modulator as phase comparator,�?? Electron. Lett. 14, 1071-1073(2003).
    [CrossRef]
  7. D. T. K. Tong, B. Mikkelsen, G. Raybon, T. N. Nielsen, K. R. Dreyer, and J. E. Johnson, �??Optoelectronic phase-locked loop with balanced photodetection for clock recovery in high-speed optical time-division-multiplexed systems,�?? IEEE Photon. Technol. Lett. 12, 1064-1066(2000).
    [CrossRef]
  8. E. S. Awad, P. S. Cho, N. Moulton, and J. Goldhar, �??Subharmonic Optical Clock Recovery From 160 Gb/s Using Time-Dependent Loss Saturation Inside a Single Electroabsorption Modulator,�?? IEEE Photon. Technol. Lett. 15, 1764-1766(2003).
    [CrossRef]
  9. J. P. Turkiewicz, E. Tangdiongga, G. D. Khoe, and H. de Waardt, �??Clock Recovery and demultiplexing Performance of 160-Gb/s OTDM Field Experiments, �?? IEEE Photon. Technol. Lett. 16, 1555-1557(2004).
    [CrossRef]
  10. C. Dorrer, and I. Kang, �??Simultaneous temporal characterization of telecommunication optical pulses and modulators by use of spectrograms,�?? Opt. Lett. 27, 1315-1317 (2002).
    [CrossRef]
  11. H. Murai, M. Kagawa, H. Tsuji, and K. Fujii, �??Recent Progress of over 160 Gbit/s Optical Signal Transmission Based on OTDM Technique,�?? in Proceedings of the 7th Contemporary Photonics Technology, (Tokyo, Japan, 2004), pp. 115-118.
  12. G. Zhu, Q. Wang, H. Chen and N. Dutta, �??High-speed clock recovery with phase-locked loop based on LiNbO3 modulators,�?? J. Opt. Engineering 43, 1056-1059 (2004).
    [CrossRef]
  13. O. Pottiez, O. Deparis, R. Kiyan, M. Haelterman, P. Emplit, P. Megret, and M. Blondel, �??Supermode noise of harmonically mode-locking Erbium fiber lasers with composite cavity,�?? IEEE J. Quantum Electron. 38, 252-259 (2002).
    [CrossRef]
  14. C. M. DePriest, T. Yilmaz, P. J. Delfyett, S. Etemad, A. Braun, J. Abeles, �??Ultralow noise and supermode suppression in an actively mode-locked external-cavity semiconductor diode ring laser,�?? Opt. Lett. 27, 719-721 (2002).
    [CrossRef]
  15. S. Kawanishi, �??Ultrahigh-speed optical time-division-multiplexed transmission technology based on optical signal processing,�?? IEEE J. Quantum Electron. 34, 2064-2079 (1998).
    [CrossRef]
  16. Q. Wang, G. Zhu, H. Dong, N. K. Dutta, �??Timing Jitter Measurement and its Reduction for Gain-Switched DFB Laser,�?? in Photonics West, Marek Osinski, Hiroshi Amano, Fritz Henneberger, Eds. Proc. SPIE 5349, 255-261 (2004).
    [CrossRef]

7th Contemporary Photonics Technology

H. Murai, M. Kagawa, H. Tsuji, and K. Fujii, �??Recent Progress of over 160 Gbit/s Optical Signal Transmission Based on OTDM Technique,�?? in Proceedings of the 7th Contemporary Photonics Technology, (Tokyo, Japan, 2004), pp. 115-118.

Electron. Lett.

L. E. Adams, E. S. Kintzer and J. G. Fujimoto, �??All-optical timing extraction at 40GHz using a mode-locked figure-eight laser with an SLA,�?? Electron. Lett. 31, 1759-1977 (1995).
[CrossRef]

M. Jinno and T. Matsumoto, �??All-optical timing extraction using 1.5µm self pulsating multielectrode DFB LD,�?? Electron. Lett. 30, 1426-1427 (1994).

C. Boerner, C. Schubert, E. Hilliger, V. Marembert, J.Berger, S.Ferber, E.Dietrich, R.Ludwig, B.Schmauss, and H.G.Weber, �??160Gbit/s clock recovery with electro-optical PLL using bidirectionally operated electroabsorption modulator as phase comparator,�?? Electron. Lett. 14, 1071-1073(2003).
[CrossRef]

IEEE J. Quantum Electron.

O. Pottiez, O. Deparis, R. Kiyan, M. Haelterman, P. Emplit, P. Megret, and M. Blondel, �??Supermode noise of harmonically mode-locking Erbium fiber lasers with composite cavity,�?? IEEE J. Quantum Electron. 38, 252-259 (2002).
[CrossRef]

S. Kawanishi, �??Ultrahigh-speed optical time-division-multiplexed transmission technology based on optical signal processing,�?? IEEE J. Quantum Electron. 34, 2064-2079 (1998).
[CrossRef]

IEEE Photon. Technol. Lett.

D. T. K. Tong, B. Mikkelsen, G. Raybon, T. N. Nielsen, K. R. Dreyer, and J. E. Johnson, �??Optoelectronic phase-locked loop with balanced photodetection for clock recovery in high-speed optical time-division-multiplexed systems,�?? IEEE Photon. Technol. Lett. 12, 1064-1066(2000).
[CrossRef]

E. S. Awad, P. S. Cho, N. Moulton, and J. Goldhar, �??Subharmonic Optical Clock Recovery From 160 Gb/s Using Time-Dependent Loss Saturation Inside a Single Electroabsorption Modulator,�?? IEEE Photon. Technol. Lett. 15, 1764-1766(2003).
[CrossRef]

J. P. Turkiewicz, E. Tangdiongga, G. D. Khoe, and H. de Waardt, �??Clock Recovery and demultiplexing Performance of 160-Gb/s OTDM Field Experiments, �?? IEEE Photon. Technol. Lett. 16, 1555-1557(2004).
[CrossRef]

P. E. Barnsley, G. E. Wickens, H. J. Wickes, D.M. Spirit, �??A 4�?5 Gb/s transmission system with all-optical clock recovery,�?? IEEE Photon. Technol. Lett. 4, 83-86 (1992).
[CrossRef]

J. Lightwave Technol.

O. Kamatani and S. Kawanishi, �??Ultrahigh-speed clock recovery with phase lock loop based on four-wave mixing in a traveling-wave laser diode amplifier,�?? J. Lightwave Technol. 14, 1757-1767 (1996).
[CrossRef]

J. Opt. Engineering

G. Zhu, Q. Wang, H. Chen and N. Dutta, �??High-speed clock recovery with phase-locked loop based on LiNbO3 modulators,�?? J. Opt. Engineering 43, 1056-1059 (2004).
[CrossRef]

Opt. Lett.

Philosophical Trans. Roy. Soc. A

D. Cotter, J. K. Lucek, �??High-speed digital optical processing in future networks,�?? Philosophical Trans. Roy. Soc. A 358, 2283-2296 (2000).
[CrossRef]

Proc. SPIE

Q. Wang, G. Zhu, H. Dong, N. K. Dutta, �??Timing Jitter Measurement and its Reduction for Gain-Switched DFB Laser,�?? in Photonics West, Marek Osinski, Hiroshi Amano, Fritz Henneberger, Eds. Proc. SPIE 5349, 255-261 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic diagram of (a) the PLL circuit and (b) cascaded modulator. [Media 2]

Fig. 2.
Fig. 2.

RF spectrum at the photodiode produced by a beating of the 160 Gb/s optical data and the 16th harmonic of the electrical input to the modulator. (a) Beat frequency spectrum using cascaded MZ modulator (b) Beat frequency spectrum using a single MZ modulator (c) Spectrum of supermodes in the input optical pulse train. [Media 1]

Fig. 3.
Fig. 3.

Waveform of the 160Gb/s patterned input data measured by wide band oscilloscope (Left) triggered by original clock and (Right) triggered by recovered clock

Fig. 4.
Fig. 4.

(Left) Waveform of VCO output 10GHz recovered clock triggered by original clock and (Right) its RF spectrum

Fig. 5.
Fig. 5.

RF spectrum of the recovered clock for jitter analysis.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I input = I 0 [ 1 + k = 0 a k cos ( 2 πk f 1 t ) ]
V mod ( t ) = V o { 1 + k = 0 b k cos [ 2 πk ( f vco + Δ f ) t ] }
T = γ 2 [ 1 + cos ( π ( V B + V mod ( t ) ) V π ) ]
I out = I input · γ 2 [ 1 + cos ( π ( V B + V mod ( t ) ) V π ) ]
σ c = 1 2 πnf p n Δ f p c RB

Metrics