Abstract

As stability and continuous operation are important for almost any use of a microcavity, we demonstrate here experimentally and theoretically a self-stable equilibrium solution for a pump-microcavity system. In this stable equilibrium, intensity- and wavelength-perturbations cause a small thermal resonant-drift that is enough to compensate for the perturbation (noises); consequently the cavity stays warm and loaded as perturbations are self compensated. We also compare here, our theoretical prediction for the thermal line broadening (and for the wavelength hysteretic response) to experimental results.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. V. B. Braginsky, M. L. Gordetsky and V. S. Ilchenko, �??Quality-factor and nonlinear properties of optical whispering-gallery modes,�?? Phys. Lett. A 137, 393 (1989)
    [CrossRef]
  2. V.S. Ilchenko, M.L. Gorodetsky, X.S. Yao, and L. Maleki, �??Microtorus: a high-finesse microcavity with whispering-gallery modes,�?? Opt Lett 26, 256, (2001).
    [CrossRef]
  3. D. K. Armani, T. J. Kippenberg, S. M. Spillane & K. J. Vahala, �??"Ultra-high-Q toroid microcavity on a chip",�?? Nature 421, 925 (2003).
    [CrossRef] [PubMed]
  4. M.L. Gorodetsky, and V.S. Ilchenko, �??Optical microsphere resonators: optimal coupling to high-Q whispering-gallery modes,�?? J. Opt. Soc. Am. B. 16, 147 (1999).
    [CrossRef]
  5. B.E. Little, J. P. Laine, H.A. Haus. �??Analytic theory of coupling from tapered fibers and half-blocks into microsphere resonators,�?? J. Lightwave Technol. 17, 704 (1999).
    [CrossRef]
  6. V. B. Braginsky, Y.I. Vorontsov, and K.S. Thorne, �??Quantum non-demolition measurements,�?? Science, 209, 47 (1980).
  7. V. B. Braginskii, and V. S. Il�??chenko, Dokl. Akad. Nauk SSSR, 293, 1358 (1987).
  8. D. F. Walls and G. Milburn, Quantum Optics, (Springer, New York, 1994).
  9. M. Scully and M. Zubairy, Quantum Optics, (Cambridge,1996).
  10. Bouwmeester, A. Ekert, and A. Zeilinger, �??The Physics of Quantum Information,�?? (Heidelberg, 2000).
  11. S. M. Spillance, T. J. Kippenberg and K. J. Vahala, �??Ultralow-threshold Raman laser using a spherical dielectric microcavity,�?? Nature, 415, 621 (2002).
    [CrossRef]
  12. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, �??Whispering-gallery mode microdisk lasers,�?? Appl. Phys. Lett. 60, 289�??291 (1992).
    [CrossRef]
  13. F. Treussart, J. Hare, V. Lefèvre-Seguin, J. -M. Raimond, and S. Haroche. �??Very low threshold whisperinggallery-mode microsphere laser,�?? Phys. Rev. A 54, R1777�??R1780 (1996).
    [CrossRef] [PubMed]
  14. Lan Yang, D. K. Armani, and K. J. Vahalab, �??Fiber-coupled Erbium Microlasers on a chip,�?? Appl. Phys. Lett, 83, 825 (2003).
    [CrossRef]
  15. T. J. Kippenberg, S. M. Spillane and K. J. Vahala, �??Kerr-nonlinearity induced optical parametric oscillation in a ultra-high-Q toroid microcavity ,�?? Phys. Rev. Lett. 93, 083904 (2004).
    [CrossRef] [PubMed]
  16. V. Lefevre-Seguin, and S. Haroche, �??Towards cavity-QED experiments with silica microspheres,�?? Mater. Sci. Eng. B 48, 53�??58 (1997).
    [CrossRef]
  17. D.W. Vernooy, A. Furusawa, N. P. Georgiades, , V. S. Ilchenko, and H. J. Kimble, �??Cavity QED with high-Q whispering gallery modes,�?? Phys. Rev. A 57, R2293�??R2296 (1998).
    [CrossRef]
  18. F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold. �??Protein detection by optical shift of a resonant microcavity,�?? Appl. Phys. Lett. 80, 4057�??4059 (2002).
    [CrossRef]
  19. A. Serpenguzel, S. Arnold, and G. Griffel, �??Excitation of resonances of microspheres on an optical fiber,�?? Opt. Lett. 20, 654�??656 (1995).
    [CrossRef] [PubMed]
  20. R. K. Chang, and A. J. Campillo, Optical Processes in Microcavities, (World Scientific, Singapore, 1996).
  21. V. S. Ilchenko, and M. L. Gorodetskii, �??Thermal nonlinear effects in optical whispering gallery microresonators,�?? Laser Phys. 2, 1004 (1992).
  22. F. Treussart, V.S. Ilchenko, J.-F. Roch, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, - S. Haroche. �??Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,�?? Eur. Phys. J. D. 1, 235�??238 (1998).
  23. To be precise, while heat convection is proportional to the surface area (l2), heat conduction is proportional to the area divided by the pass length (l2/ l= l). Since both convection and conduction contribute here, the precise scaling is �?T�?? l÷l2 . Being very precise, one should also consider the fact that light wavelength is usually not scaled down and hence the mode volume scaling is actually slightly smaller than l3.
  24. David N. Nikogosyan, Properties of Optical and Laser Related Materials A Handbook, (John Wiley & Son,1997).
  25. M. L. Gorodetsky, and I. S. Grudinin, �??Fundamental thermal fluctuations in microspheres,�?? J. Opt. Soc. Am. B 21, 697, (2004 ).
    [CrossRef]

  26. T. Carmon, T. J. Kippenberg, L. Yang, H. Rokhsari, S. Spillane, K., J, Vahala, �??Power locked and wavelength locked ultra-high-Q optical microcavities,�?? Submitted to Appl. Phys. Lett. (Aug, 2004).

Appl. Phys. Lett, (1)

Lan Yang, D. K. Armani, and K. J. Vahalab, �??Fiber-coupled Erbium Microlasers on a chip,�?? Appl. Phys. Lett, 83, 825 (2003).
[CrossRef]

Appl. Phys. Lett. (3)

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, �??Whispering-gallery mode microdisk lasers,�?? Appl. Phys. Lett. 60, 289�??291 (1992).
[CrossRef]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold. �??Protein detection by optical shift of a resonant microcavity,�?? Appl. Phys. Lett. 80, 4057�??4059 (2002).
[CrossRef]

T. Carmon, T. J. Kippenberg, L. Yang, H. Rokhsari, S. Spillane, K., J, Vahala, �??Power locked and wavelength locked ultra-high-Q optical microcavities,�?? Submitted to Appl. Phys. Lett. (Aug, 2004).

Eur. Phys. J. D. (1)

F. Treussart, V.S. Ilchenko, J.-F. Roch, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, - S. Haroche. �??Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,�?? Eur. Phys. J. D. 1, 235�??238 (1998).

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

J. Opt. Soc. Am. B. (1)

M.L. Gorodetsky, and V.S. Ilchenko, �??Optical microsphere resonators: optimal coupling to high-Q whispering-gallery modes,�?? J. Opt. Soc. Am. B. 16, 147 (1999).
[CrossRef]

Laser Phys. (1)

V. S. Ilchenko, and M. L. Gorodetskii, �??Thermal nonlinear effects in optical whispering gallery microresonators,�?? Laser Phys. 2, 1004 (1992).

Mater. Sci. Eng. B (1)

V. Lefevre-Seguin, and S. Haroche, �??Towards cavity-QED experiments with silica microspheres,�?? Mater. Sci. Eng. B 48, 53�??58 (1997).
[CrossRef]

Nature (2)

S. M. Spillance, T. J. Kippenberg and K. J. Vahala, �??Ultralow-threshold Raman laser using a spherical dielectric microcavity,�?? Nature, 415, 621 (2002).
[CrossRef]

D. K. Armani, T. J. Kippenberg, S. M. Spillane & K. J. Vahala, �??"Ultra-high-Q toroid microcavity on a chip",�?? Nature 421, 925 (2003).
[CrossRef] [PubMed]

Opt Lett (1)

V.S. Ilchenko, M.L. Gorodetsky, X.S. Yao, and L. Maleki, �??Microtorus: a high-finesse microcavity with whispering-gallery modes,�?? Opt Lett 26, 256, (2001).
[CrossRef]

Opt. Lett. (1)

Phys. Lett. A (1)

V. B. Braginsky, M. L. Gordetsky and V. S. Ilchenko, �??Quality-factor and nonlinear properties of optical whispering-gallery modes,�?? Phys. Lett. A 137, 393 (1989)
[CrossRef]

Phys. Rev. A (2)

D.W. Vernooy, A. Furusawa, N. P. Georgiades, , V. S. Ilchenko, and H. J. Kimble, �??Cavity QED with high-Q whispering gallery modes,�?? Phys. Rev. A 57, R2293�??R2296 (1998).
[CrossRef]

F. Treussart, J. Hare, V. Lefèvre-Seguin, J. -M. Raimond, and S. Haroche. �??Very low threshold whisperinggallery-mode microsphere laser,�?? Phys. Rev. A 54, R1777�??R1780 (1996).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

T. J. Kippenberg, S. M. Spillane and K. J. Vahala, �??Kerr-nonlinearity induced optical parametric oscillation in a ultra-high-Q toroid microcavity ,�?? Phys. Rev. Lett. 93, 083904 (2004).
[CrossRef] [PubMed]

Science (1)

V. B. Braginsky, Y.I. Vorontsov, and K.S. Thorne, �??Quantum non-demolition measurements,�?? Science, 209, 47 (1980).

Other (8)

V. B. Braginskii, and V. S. Il�??chenko, Dokl. Akad. Nauk SSSR, 293, 1358 (1987).

D. F. Walls and G. Milburn, Quantum Optics, (Springer, New York, 1994).

M. Scully and M. Zubairy, Quantum Optics, (Cambridge,1996).

Bouwmeester, A. Ekert, and A. Zeilinger, �??The Physics of Quantum Information,�?? (Heidelberg, 2000).

R. K. Chang, and A. J. Campillo, Optical Processes in Microcavities, (World Scientific, Singapore, 1996).

To be precise, while heat convection is proportional to the surface area (l2), heat conduction is proportional to the area divided by the pass length (l2/ l= l). Since both convection and conduction contribute here, the precise scaling is �?T�?? l÷l2 . Being very precise, one should also consider the fact that light wavelength is usually not scaled down and hence the mode volume scaling is actually slightly smaller than l3.

David N. Nikogosyan, Properties of Optical and Laser Related Materials A Handbook, (John Wiley & Son,1997).


Supplementary Material (2)

» Media 1: MOV (2352 KB)     
» Media 2: MOV (6463 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Dynamical thermal behavior of a toroidal microcavity (a) As the pump makes a 46 Å/s wavelength scan (upper red) it approaches the cavity resonance (upper blue) and cause a thermal drift of the resonance line. In the upper plot, the right ordinate describes the temperature of the mode volume relative to the ambient temperature and the left ordinate gives the pump wavelength and cavity resonance wavelength (relative to the cold resonance). The pump-cavity transmission is presented as a function of time (middle) and as a function of the pump wavelength (bottom). Here blue dots represent experimentally measured data and lines stand for calculations. The parameters used for the fit are Ih /K=7.16°C and Ih /Cp =18000 °C/s. The cold resonance wavelength of the microcavity is λ 0 =1545nm and its quality factor is Q = 2×107, the pump power was 1.8 mW. (b) To emphasize fine details, we repeat the same calculation but using a reduced Q (Q = 5×105), For convenience, the cavity FWHM is marked on the cavity resonance wavelength (top blue).

Fig. 2.
Fig. 2.

(2.4 MB) Movie of the cavity wavelength response (6.6 MB version). The scanning-pump (red) induces thermal drift of the resonant lineshape (blue). The intersection point between the pump line and the cavity Lorentzian draws the hysteretic absorption (black). Parameters here are identical to the parameters in Fig. 1(b). The movie is in slow motion as each scan cycle truly takes 80 ms

Fig. 3
Fig. 3

Equilibrium solutions: (a) Presented are the resonant thermal wavelength-drift (left ordinate) and the cavity temperature (right ordinate, relative to the ambient temperature) at equilibrium for various values of pump wavelength (horizontal axis). The 3 distinct equilibrium regimes are color coded. On the right (b, c, and d), we illustrate a solution-triplet for the pump position shown in the left panel. (Parameters are as in Fig. 1(b))

Fig. 4.
Fig. 4.

Numerical calculation of dynamical noise response at equilibrium. (a) Warm stable-equilibrium: The stable warm equilibrium is reached by an upward wavelength scan, stopping at a pump wavelength of 0.56 angstrom above the cold resonance. In this equilibrium, the system overcomes Gaussian noise in the pump wavelength (with amplitude of one cavity width). The noise spectra is of random amplitude and spread Gaussianly in the Fourier space having FWHM of 100 KHz around the DC. (b) Unstable warm equilibrium: Starting in the unstable warm equilibrium (pump wavelength 0.56 angstrom and cavity thermal-drifted resonance 0.52 angstrom above the cold resonance), the smallest positive noise will take the system to the warm stable-equilibrium; while the smallest negative noise will take the system to the cold stable-equilibrium. Noise here is smaller than 1/1010 of the cavity FWHM. In this figure all parameters are as in Fig 1(b) (except for the pump wavelength), Figs. 2 and 3. All temperatures are relative to the ambient temperature and all wavelengths are relative to the cold cavity resonance.

Fig. 5.
Fig. 5.

The wavelength response for a slow scan (0.002 Å/s) possesses a stable, warm equilibrium during the upward wavelength scan. A fast pass through resonance occurs during the downward wavelength scan (note that we zoom in here and show only a fraction of the wavelength scan). When in the warm stable equilibrium (in a region near 20 s in the scan), the system can recover from a perturbation as shown in the inset. We used a spherical cavity with a diameter of 0.26mm and Q = 2×106.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

N = 2 πr c 1 ( 1 + ε Δ T ) λ r ( n 0 + dn dT Δ T )
λ r ( Δ T ) λ 0 [ 1 + ( ε + dn dT n 0 ) Δ T ]
λ 0 ( 1 + a Δ T ) .
q ˙ in = I η Q Q abs 1 ( λ p λ r Δ λ 2 ) 2 + 1 I h 1 ( λ p λ 0 ( 1 + a Δ T ) Δ λ 2 ) 2 + 1
Cp Δ T ˙ ( t ) = q ˙ in q ˙ out
= I h 1 ( λ p λ 0 ( 1 + a Δ T ) Δ λ 2 ) 2 + 1 K Δ T ( t ) .
0 = I h 1 ( λ p λ 0 ( 1 + a Δ T ) Δ λ 2 ) 2 + 1 K Δ T .

Metrics