Abstract

We report measurements of the nonlinearity profile of thermally poled low-loss germanosilicate films deposited on fused-silica substrates by PECVD, of interest as potential electro-optic devices. The profiles of films grown and poled under various conditions all exhibit a sharp peak ~0.5 μm beneath the anode surface, followed by a weaker pedestal of approximately constant amplitude down to a depth of 13–16 μm, without the sign reversal typical of poled undoped fused silica. These features suggest that during poling, the films significantly slow down the injection of positive ions into the structure. After local optimization, we demonstrate a record peak nonlinear coefficient of ~1.6 pm/V, approximately twice as strong as the highest reliable value reported in thermally poled fused silica glass, a significant improvement that was qualitatively expected from the presence of Ge.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. Y. Quiquempois, P. Niay, M. Douay, and B. Poumellec, " Advances in poling and permanently induced phenomena in silica-based glasses," Current Opinion in Solid State & Materials Science 7, 89-95 (2003)
    [CrossRef]
  2. A. Ozcan, M. J. F. Digonnet, and G. S. Kino, "Improved technique to determine second-order optical nonlinearity profiles using two different samples," Appl. Phys. Lett. 84, 681-683 (2004).
    [CrossRef]
  3. A. C. Liu, M. J. F. Digonnet, and G. S. Kino, "Electro-optic phase modulation in silica channel waveguide," Opt. Lett. 19, 466-468 (1994)
    [CrossRef] [PubMed]
  4. T. Fujiwara, D. Wong, and S. Fleming, "Large electrooptic modulation in a thermally-poled germanosilicate fiber," IEEE Photon. Tech. Lett. 10, 1177-1179 (1995)
    [CrossRef]
  5. X. C. Long and S. R. J. Brueck, "Large-signal phase retardation with a poled electrooptic fiber," IEEE Photon. Tech. Lett. 9, 767-769 (1997)
    [CrossRef]
  6. Y. Ren, C. J. Marckmann, J. Arentoft, and M. Kristensen, "Thermally poled channel waveguides with polarization-independent electrooptic effect," IEEE Photon. Tech. Lett. 14 639-641 (2002)
    [CrossRef]
  7. F. Ay, A. Aydinli, and S. Agan "Low-loss as-grown germanosilicate layers for optical waveguides," Appl. Phys. Lett. 83, 4743-4745 (2003)
    [CrossRef]
  8. D. Faccio, A. Busacca, D. W. J. Harwood, G. Bonfrate, V. Pruneri, and P. G. Kazansky, "Effect of core-cladding interface on thermal poling of germanosilicate optical waveguides," Opt. Comm. 196, 187-190 (2001)
    [CrossRef]
  9. J. Khaled, T. Fujiwara, M. Ohama, and A. J. Ikushima, "Generation of second harmonics in Ge-doped SiO2 thin films by ultraviolet irradiation under poling electric field," J. Appl. Phys. 87, 2137-2141 (2000)
    [CrossRef]
  10. A. Ozcan, M. J. F. Digonnet, and G. S. Kino, "Iterative processing of second-order optical nonlinearity depth profiles," Opt. Express 12, 3367-3376 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-15-3367">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-15-3367</a>
    [CrossRef] [PubMed]
  11. F. Ay, and A. Aydinli, "Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides," Opt. Mat. 26, 33-46 (2004)
    [CrossRef]
  12. A. S. Huang, Y. Arie, C. C. Neil, and J. M. Hammer, "Study of refractive index of GeO2:SiO2 mixtures using deposited-thin-film optical waveguides," Appl. Opt. 24, 4404-4407 (1985)
    [CrossRef] [PubMed]
  13. R. A. Myers, N. Mukerjkee, and S. R. J. Brueck, "Large second-order nonlinearity in poled fused silica," Opt. Lett. 16, 1732-1734 (1991).
    [CrossRef] [PubMed]
  14. A. Ozcan, M. J. F. Digonnet, and G. S. Kino, "Cylinder-assisted Maker-fringe technique," Electron. Lett. 39, 1834-1836 (2003).
    [CrossRef]
  15. P. D. Maker, R. W. Terhune, M. Nisenhoff, and C. M. Savage, "Effects of dispersion and focusing on production of optical harmonics," Phys. Rev. Lett. 8, 21-22 (1962).
    [CrossRef]
  16. J. Jerphagnon, and S. K. Kurtz, "Maker fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals," J. Appl. Phys. 41, 1667-1681 (1970).
    [CrossRef]
  17. J. R. Fienup, "Reconstruction of an object from the modulus of its Fourier transform," Opt. Lett. 3, 27-29 (1978).
    [CrossRef] [PubMed]
  18. T. G. Alley, S. R. J. Brueck, and R. A. Myers, "Space charge dynamics in thermally poled fused silica," J. Non-Cryst. Solids 242, 165-176 (1998)
    [CrossRef]
  19. A. C. Liu, M. J. F. Digonnet, and G. S. Kino, "Measurement of the dc Kerr and electrostrictive phase modulation in silica," J. Opt. Soc. Am. B 18, 187-194, (2001)
    [CrossRef]
  20. D. Faccio, V. Pruneri, and P. G. Kazanksy, "Dynamics of the second order nonlinearity in thermally poled silica glass," Appl. Phys. Lett. 79, 2687-2689 (2001)
    [CrossRef]
  21. N. Boling, A. Glass, and A. Owyoung, "Empirical relationships for predicting nonlinear refractive index changes in optical solids," IEEE J. Quantum Electron. 14, 601-608 (1978).
    [CrossRef]
  22. A. Ozcan, M. J. F. Digonnet, and G. S. Kino, "Simplified inverse Fourier transform technique to measure optical nonlinearity profiles using reference sample," Electron. Lett. 40, 551-552 (2004).
    [CrossRef]
  23. Y. Quiquempois, G. Martinelli, P. Dutherage, P. Bernage, P. and M. Douay, "Localisation of the induced second-order non-linearity within Infrasil and Suprasil thermally poled glasses," Opt. Comm. 176, 479-487 (2000)
    [CrossRef]
  24. A. Kameyama, A. Yokotani, K. Kurosawa, "Generation and erasure of second-order optical nonlinearities in thermally poled silica glasses by control of point defects," J. Opt. Soc. Am. B 19, 2376-2383 (2002)
    [CrossRef]
  25. P. Thamboon and D. M. Krol, "Second-order optical nonlinearities in thermally poled phosphate glasses," J. Appl. Phys. 93, 32-37 (2003)
    [CrossRef]
  26. R. T. Crosswell, A. Reisman, D. L. Simpson, D. Temple, and C. K. Williams, "Planarization processes and applications: III. As-deposited and annealed film properties," J. Electrochem. Soc. 147, 1513-1524 (2000)
    [CrossRef]

Appl. Opt.

Appl. Phys. Lett.

F. Ay, A. Aydinli, and S. Agan "Low-loss as-grown germanosilicate layers for optical waveguides," Appl. Phys. Lett. 83, 4743-4745 (2003)
[CrossRef]

A. Ozcan, M. J. F. Digonnet, and G. S. Kino, "Improved technique to determine second-order optical nonlinearity profiles using two different samples," Appl. Phys. Lett. 84, 681-683 (2004).
[CrossRef]

D. Faccio, V. Pruneri, and P. G. Kazanksy, "Dynamics of the second order nonlinearity in thermally poled silica glass," Appl. Phys. Lett. 79, 2687-2689 (2001)
[CrossRef]

Electron. Lett.

A. Ozcan, M. J. F. Digonnet, and G. S. Kino, "Cylinder-assisted Maker-fringe technique," Electron. Lett. 39, 1834-1836 (2003).
[CrossRef]

A. Ozcan, M. J. F. Digonnet, and G. S. Kino, "Simplified inverse Fourier transform technique to measure optical nonlinearity profiles using reference sample," Electron. Lett. 40, 551-552 (2004).
[CrossRef]

IEEE J. Quantum Electron.

N. Boling, A. Glass, and A. Owyoung, "Empirical relationships for predicting nonlinear refractive index changes in optical solids," IEEE J. Quantum Electron. 14, 601-608 (1978).
[CrossRef]

IEEE Photon. Tech. Lett.

T. Fujiwara, D. Wong, and S. Fleming, "Large electrooptic modulation in a thermally-poled germanosilicate fiber," IEEE Photon. Tech. Lett. 10, 1177-1179 (1995)
[CrossRef]

X. C. Long and S. R. J. Brueck, "Large-signal phase retardation with a poled electrooptic fiber," IEEE Photon. Tech. Lett. 9, 767-769 (1997)
[CrossRef]

Y. Ren, C. J. Marckmann, J. Arentoft, and M. Kristensen, "Thermally poled channel waveguides with polarization-independent electrooptic effect," IEEE Photon. Tech. Lett. 14 639-641 (2002)
[CrossRef]

J. Appl. Phys.

J. Khaled, T. Fujiwara, M. Ohama, and A. J. Ikushima, "Generation of second harmonics in Ge-doped SiO2 thin films by ultraviolet irradiation under poling electric field," J. Appl. Phys. 87, 2137-2141 (2000)
[CrossRef]

J. Jerphagnon, and S. K. Kurtz, "Maker fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals," J. Appl. Phys. 41, 1667-1681 (1970).
[CrossRef]

P. Thamboon and D. M. Krol, "Second-order optical nonlinearities in thermally poled phosphate glasses," J. Appl. Phys. 93, 32-37 (2003)
[CrossRef]

J. Electrochem. Soc.

R. T. Crosswell, A. Reisman, D. L. Simpson, D. Temple, and C. K. Williams, "Planarization processes and applications: III. As-deposited and annealed film properties," J. Electrochem. Soc. 147, 1513-1524 (2000)
[CrossRef]

J. Non-Cryst. Solids

T. G. Alley, S. R. J. Brueck, and R. A. Myers, "Space charge dynamics in thermally poled fused silica," J. Non-Cryst. Solids 242, 165-176 (1998)
[CrossRef]

J. Opt. Soc. Am. B

Opt. Comm.

Y. Quiquempois, G. Martinelli, P. Dutherage, P. Bernage, P. and M. Douay, "Localisation of the induced second-order non-linearity within Infrasil and Suprasil thermally poled glasses," Opt. Comm. 176, 479-487 (2000)
[CrossRef]

D. Faccio, A. Busacca, D. W. J. Harwood, G. Bonfrate, V. Pruneri, and P. G. Kazansky, "Effect of core-cladding interface on thermal poling of germanosilicate optical waveguides," Opt. Comm. 196, 187-190 (2001)
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Mat.

F. Ay, and A. Aydinli, "Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides," Opt. Mat. 26, 33-46 (2004)
[CrossRef]

Phys. Rev. Lett.

P. D. Maker, R. W. Terhune, M. Nisenhoff, and C. M. Savage, "Effects of dispersion and focusing on production of optical harmonics," Phys. Rev. Lett. 8, 21-22 (1962).
[CrossRef]

Solid State & Materials Science

Y. Quiquempois, P. Niay, M. Douay, and B. Poumellec, " Advances in poling and permanently induced phenomena in silica-based glasses," Current Opinion in Solid State & Materials Science 7, 89-95 (2003)
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Calibrated MF curves measured for (a) sample # 2, (b) sample # 3, and (c) sample # 4. The solid curves are the theoretical MF curves computed from the recovered d 33(z) profiles. (d) The recovered optical nonlinearity depth profiles of sample # 2 (blue), # 3 (red) and # 4 (black).

Fig. 2.
Fig. 2.

Blue curve (left axis): the ratio of the χ (3) of the PECVD grown layer to the χ (3) of fused silica; green curve (right axis): maximum built-in E-field measured in poled germanosilicate films.

Fig. 3.
Fig. 3.

Charge density of poled sample # 4, inferred by differentiating the recovered d 33(z) profile.

Fig. 4.
Fig. 4.

Calibrated MF curves measured for (a) sample #1, (b) sample #6, and (c) sample #7. The solid curves in each figure are the theoretical MF curves computed from the recovered d 33(z) profiles. (d) The recovered nonlinearity profiles of sample #1 (blue), #3 (red), #6 (black) and #7 (green).

Fig. 5.
Fig. 5.

Calibrated MF curve measured for (a) sample #5. The solid curves are the theoretical MF curves computed from the recovered d 33(z) profiles. (b) The recovered optical nonlinearity depth profile of samples #3 (red) and #5 (blue).

Tables (1)

Tables Icon

Table 1. Characteristics and poling time of germanosilicate films poled in air at ~5 kV and ~280 °C.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

d 33 = 3 2 χ ( 3 ) E

Metrics