Abstract

The planar waveguides have been fabricated in fused quartz by 3.0 MeV oxygen ion implantation at dose of 1×1015ions/cm2. The guiding modes were observed at wavelengths of both 633 nm and 1539 nm before and after annealing at 320°C, 450°C and 500°C in 60 min characterized by the prism-coupling method. The width of the waveguide structure induced by oxygen ion implantation is about 3 microns. After suitable annealing, the minimum propagation loss of the waveguide in fused quartz can be reduced to -0.14 dB/cm.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. I. K. Naik, �??Low-loss integrated optical waveguides fabricated by nitrogen ion implantation,�?? Appl. Phys. Lett. 46(6), 519-521 (1983).
    [CrossRef]
  2. E. V. K. Rao and D. Moutonnet, �??Buried optical waveguides in fused silica by high-energy oxygen ion implantation,�?? J. Appl. Phys. 46, 955-957 (1975).
    [CrossRef]
  3. P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge University Press, Cambridge, 1994).
    [CrossRef]
  4. Ch. Buchal, �??Ion implantation for photorefractive devices and optical emitters,�?? Nucl. Instrum. Methods B 166�??167, 743-749(2000).
    [CrossRef]
  5. P. D. Townsend, �??Development of ion implantation for optical applications,�?? Vacuum 51, 301-304 (1998).
    [CrossRef]
  6. F. Chen, X. L. Wang, K. M. Wang, Q. M. Lu and D. Y. Shen, �??Optical waveguides formed in Nd:YVO4 by MeV Si+ implantation,�?? Appl. Phys. Lett. 80, 3473-3745 (2002).
    [CrossRef]
  7. F. Chen, X. L. Wang, K. M. Wang, Q. M. Lu and D. Y. Shen, �??Ion-implanted Nd:YVO4 planar waveguide: refractive-index characterization and propagation mode reduction,�?? Opt. Lett. 27, 1111-1113 (2002)
    [CrossRef]
  8. F. Chen, K. M. Wang, X. L. Wang, X. S. Li, Q. M. Lu, D. Y. Shen and R. Nie, �??Monomode, nonleaky planar waveguides in a Nd3+-doped silicate glass produced by silicon ion implantation at low doses,�?? J. Appl. Phys. 92, 2959-2961 (2002).
    [CrossRef]
  9. D. L. Zhang, E. Y. B. Pun, �??Accurate measurement of 1.5 µm lifetime of Er3+ in LiNbO3 crystals and waveguides,�?? J. Appl. Phys. 94, 1339-1346 (2003).
    [CrossRef]
  10. S. L. Li, K. M. Wang, F. Chen, X. L. Wang and G. Fu, �??Monomode optical waveguide excited at 1540 nm in LiNbO3 formed by MeV carbon ion implantation at low doses,�?? Opt. Express 12, 747-752 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-747">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-747</a>
    [CrossRef] [PubMed]
  11. C. M. Johnson, M. C. Ridgway and P. W. Leech, �??Thermal annealing of implantation-induced compaction for improved silica waveguide performance,�?? Appl. Phys. Lett. 69, 984-986 (1996).
    [CrossRef]
  12. S. Durra, H.E. Jackson, J.T. Boyd, R.L. Davis and F.S. Hickernell, �??CO2 laser annealing of Si3N4, Nb2O5, and Ta2O5 thin-film optical waveguides to achieve scattering loss reduction,�?? IEEE J. Quantum Electron. 18, 800-807 (1982)
    [CrossRef]
  13. C. C. Davis, Lasers and Electro-Optics (Cambridge University Press, Cambridge, 1996).
  14. P. J. Chandler and F. L. Lama, �??A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,�?? Opt. Acta 33, 127-142 (1986).
    [CrossRef]

Appl. Phys. Lett. (3)

I. K. Naik, �??Low-loss integrated optical waveguides fabricated by nitrogen ion implantation,�?? Appl. Phys. Lett. 46(6), 519-521 (1983).
[CrossRef]

F. Chen, X. L. Wang, K. M. Wang, Q. M. Lu and D. Y. Shen, �??Optical waveguides formed in Nd:YVO4 by MeV Si+ implantation,�?? Appl. Phys. Lett. 80, 3473-3745 (2002).
[CrossRef]

C. M. Johnson, M. C. Ridgway and P. W. Leech, �??Thermal annealing of implantation-induced compaction for improved silica waveguide performance,�?? Appl. Phys. Lett. 69, 984-986 (1996).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. Durra, H.E. Jackson, J.T. Boyd, R.L. Davis and F.S. Hickernell, �??CO2 laser annealing of Si3N4, Nb2O5, and Ta2O5 thin-film optical waveguides to achieve scattering loss reduction,�?? IEEE J. Quantum Electron. 18, 800-807 (1982)
[CrossRef]

J. Appl. Phys. (3)

E. V. K. Rao and D. Moutonnet, �??Buried optical waveguides in fused silica by high-energy oxygen ion implantation,�?? J. Appl. Phys. 46, 955-957 (1975).
[CrossRef]

F. Chen, K. M. Wang, X. L. Wang, X. S. Li, Q. M. Lu, D. Y. Shen and R. Nie, �??Monomode, nonleaky planar waveguides in a Nd3+-doped silicate glass produced by silicon ion implantation at low doses,�?? J. Appl. Phys. 92, 2959-2961 (2002).
[CrossRef]

D. L. Zhang, E. Y. B. Pun, �??Accurate measurement of 1.5 µm lifetime of Er3+ in LiNbO3 crystals and waveguides,�?? J. Appl. Phys. 94, 1339-1346 (2003).
[CrossRef]

Nucl. Instrum. Methods B (1)

Ch. Buchal, �??Ion implantation for photorefractive devices and optical emitters,�?? Nucl. Instrum. Methods B 166�??167, 743-749(2000).
[CrossRef]

Opt. Acta (1)

P. J. Chandler and F. L. Lama, �??A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,�?? Opt. Acta 33, 127-142 (1986).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Vacuum (1)

P. D. Townsend, �??Development of ion implantation for optical applications,�?? Vacuum 51, 301-304 (1998).
[CrossRef]

Other (2)

P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge University Press, Cambridge, 1994).
[CrossRef]

C. C. Davis, Lasers and Electro-Optics (Cambridge University Press, Cambridge, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Measured relative intensity of the light (TE polarized) reflected from the prism versus effective refractive index for the fused quartz waveguide formed by 3.0 MeV O+ ion implantation at the dose of 1×1015 ions/cm2 before and after annealing with the wavelengths of both 633 nm and 1539 nm, respectively. A1 and A2 represent the results for as implanted sample measured with wavelength of 633 and 1539nm, respectively. D1 and D2 represent the results after annealing at 500°C in air measured with wavelength of 633nm and 1539nm, respectively.

Fig. 2.
Fig. 2.

Refractive index profiles (at the wavelength of 633nm) of the fused quartz waveguide formed by 3.0 MeV O+ ion implantation under four different treatments: A, as implanted; B, after annealing at 320°C, 60min; C, after annealing at 450°C, 60min; D, after annealing at 500°C, 60min; E, refractive index for virgin of fused quartz (n=1.4572).

Fig. 3.
Fig. 3.

Natural logarithm of the scattered intensity of light vs. propagation distance along the fused quartz waveguides formed by 3.0 MeV O+ ion implantation at the dose of 1×1015 ions/cm2 before and after different annealing treatments in air measured with the wavelengths of 633 nm, respectively. A, as implanted; B, after annealing at 320°C, 60min; C, after annealing at 450°C, 60min; D, after annealing at 500°C, 60min.

Fig. 4.
Fig. 4.

The 633nm light propagating from right to left through the fused quartz waveguide formed by 3.0 MeV O+ ion implantation with prism coupling: A: as implanted and B: after annealing treatment at 500°C in air, respectively.

Tables (1)

Tables Icon

Table 1. Comparison of measured and calculated by RCM propagation modes of their effective refractive indices obtained from different treatments at the wavelength of 633nm. A, as implanted; B, after annealing at 320°C, 60min; C, after annealing at 450°C, 60min; D, after annealing at 500°C, 60min.

Metrics